Signalling Games and Pragmatics Day II

> Anton Benz University of Southern Denmark, IFKI, Kolding

The Course

- Day I: Introduction: From Grice to Lewis
- Day II: Basics of Game and Decision Theory
- Day III: Two Theories of Implicatures (Parikh, Jäger)
- Day IV: Best Answer Approach
- Day V: Utility and Relevance

Overview Day I Introduction: From Grice to Lewis

- Gricean Pragmatics
 - □ General assumptions about conversation
 - Conversational implicatures
- Game and Decision Theory
- Lewis on Conventions
 - Examples of Conventions
 - Signalling conventions
 - Meaning in Signalling systems

Basics of Game and Decision Theory

Day 2 – August, 8th

Overview

Elements of Decision Theory

- Relevance as Informativity (Merin);
- □ Relevance as Expected Utility (van Rooij).

Game Theory

- □ Strategic games in normal form
- Equilibrium concepts
- Games in extensive form
- Signalling games
- □ Application: Resolving Ambiguities (P. Parikh)

Game and Decision Theory

- Decision theory: Concerned with decisions of individual agents
- Game theory: Concerned with interdependent decisions of several agents.

Elements of Decision Theory

With application to measures of relevance

Decision Situations

- Take an umbrella with you when leaving the house.
- Choose between several candidates for a job.
- Decide where to look for a book which you want to buy.

A Classification of Decision Situations

One distinguishes between decision under:

- Certainty: The decision maker knows the outcome of each action with certainty.
- Risk: The decision maker knows of each outcome that it occurs with a certain probability.
- Uncertainty: No probabilities for outcomes of actions are known to the decision maker.

- We are only concerned with decisions under certainty or risk.
- Decisions may become risky because the decision maker does not know the true state of affairs.
- He may have expectations about the state of affairs.
- Expectations are standardly represented as probabilistic knowledge about a set of possible worlds.

Discrete Probability Space

A discrete probability space consists of:

- Ω: at most countable set.
- P : $\Omega \rightarrow [0, 1]$ a function such that

$$\sum_{v \in \Omega} P(v) = 1.$$

Notation: P(A) := $\sum_{v \in A} P(v)$ for A ⊆ Ω.

Representation of Decision Problem

- A **decision problem** is a triple ((Ω, P),A,u) such that:
- (Ω, P) is a discrete probability space,
- A a finite, non-empty set of **actions**.
- $u : \Omega \times A \rightarrow R$ a real valued function.
- A is called the action set, and its elements actions.
- \succ u is called a payoff or utility function.

Taking an Umbrella with you

Worlds:

- □ w: rainy day.
- □ v: cloudy but dry weather.
- □ u: sunny day.

Probabilities:

□ P(w)=1/3; P(v)=1/6; p(u)=1/2

Actions:

 \Box a: taking umbrella with you; b: taking no umbrella.

Utilities:

- \Box rainy day: u(w,a) = 1, u(w,b) = -1.
- \Box cloudy day: u(v,a) = -0.1, u(w,b) = 0.
- □ sunny day: u(u,a) = -0.1, u(u,b) = 0..

Learning

How are expectations change by new information? Example:

- 1. Before John looked out of window: P(cloudy \land will-rain) = 1/3; P(cloudy) = 1/2.
- 2. Looking out of window John learns that it is cloudy.
 - > What is the new probability of will-rain?

Conditional Probabilities

- Let (Ω, P) be a discrete probability space representing expectations prior to new observation A.
- For any hypothesis H the conditional probability is defined as:

 $P(H|A) = P(H \cap A)/P(A)$ for P(A)>0

Example:

- 1. Before John looked out of window: P(cloudy \land will-rain) = 1/3; P(cloudy) = 1/2.
- John learns that it is cloudy. The posterior probability P⁺ is defined as: P⁺(will-rain) := P(will-rain|cloudy)
 - = P(will-rain \cap cloudy) /P(cloudy)

Relevance as Informativity

(Arthur Merin)

The Argumentative view

- Speaker tries to persuade the hearer of a hypothesis H.
- Hearers expectations given by (Ω, P) .
- Hearer's decision problem:

•
$$\mathcal{A} = \{H, \bar{H}\}$$
 with $\bar{H} = \Omega \setminus H$;
• $u(v, H) = \begin{cases} 1 \text{ iff } v \in H \\ 0 \text{ iff } v \notin H \end{cases}$ and $u(v, \bar{H}) = \begin{cases} 1 \text{ iff } v \in \bar{H} \\ 0 \text{ iff } v \notin \bar{H} \end{cases}$

Example

- If Eve has an interview for a job she wants to get, then
- her goal is to convince the interviewer that she is qualified for the job (H).
- Whatever she says is the more relevant the more it favours H and disfavours the opposite proposition.

Measuring the Update Potential of an Assertion A.

Hearer's inclination to believe H prior to learning A:

 $P(H)/P(H^{-})$

Inclination to believe H after learning A: P⁺(H)/P⁺(H⁻) = P(H|A)/P(H⁻|A) = = P(H)/P(H⁻)×P(A|H)/P(A|H⁻)

Using log (just a trick!) we get:

 $log P^{+}(H)/P^{+}(H^{-}) = log P(H)/P(H^{-}) + log P(A|H)/P(A|H^{-})$ New = Old + update

log P(A|H)/P(A|H⁻) can be seen as the update potential of proposition A with respect to H.

Relevance (Merin)

Intuitively: A proposition A is the more relevant to a hypothesis H the more it increases the inclination to believe H.

$$r_{H}(A) := \log P(A|H)/P(A|H^{-})$$

If r_H(A) = 0, then A does not change the prior expectations about H.

Relevance as Expected Utility

(Robert van Rooij)

An Example (Job interview)

- v₁: Eve has ample of job experience and can take up a responsible position immediately.
- v₂: Eve has done an internship and acquired there job relevant qualifications but needs some time to take over responsibility.
- v₃: Eve has done an internship but acquired no relevant qualifications and needs heavy training before she can start on the job.
- v₄: Eve has just finished university and needs extensive training.

Interviewer's decision problem: a₁: Employ Eve. a₂: Don't employ Eve.

All worlds equally probable

How to decide the decision problem?

Expected Utility

Given a decision problem ((Ω , P),A,u), the expected utility of an action *a* is:

$$EU(a) = \sum_{v \in \Omega} P(v) \cdot u(v, a)$$

In our Example

$$EU(a_1) = \frac{1}{4} \cdot 10 + \frac{1}{4} \cdot 3 + \frac{1}{4} \cdot (-1) + \frac{1}{4} \cdot (-5) = 1\frac{3}{4}$$
$$EU(a_2) = \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = 0.$$

Decision Criterion

- It is assumed that rational agents are Bayesian utility maximisers.
- If an agent chooses an action, then the action's expected utility must be maximal.
- In our example: As $EU(a_1) > EU(a_2)$ it follows that the interviewer will employ Eve.

The Effect of Learning

If an agent learns that A, how does this change expected utilities?

$$EU(a|A) = \sum_{v \in \Omega} P(v|A) \cdot u(v, a).$$

Our Example

What happens if the interviewer learns that Eve did an internship (A={v₁,v₂})?

$$EU(a_1|A) = \sum_{v \in \Omega} P(v|A) \cdot u(v, a_1) = \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot (-1) = 1.$$

- Similarly, we find $EU(a_2|A) = 0$.
- > The interviewer will decide not to employ Eve.

Measures of Relevance I (van Rooij)

(Sample Value of Information)

New information A is relevant if

- it leads to a different choice of action, and
- it is the more relevant the more it increases thereby expected utility.

Measures of Relevance I (van Rooij)

(Sample Value of Information)

 \Box Let ((Ω , P),A,u) be a given decision problem.

□ Let a* be the action with maximal expected utility before learning *A*.

Utility Value or **Relevance** of *A*:

$$UV(A) = \max_{a \in \mathcal{A}} EU(a|A) - EU(a^*|A).$$

Measures of Relevance II (van Rooij)

New information A is relevant if

- it increases expected utility.
- it is the more relevant the more it increases it.

 $UV'(A) = \max_{a \in \mathcal{A}} EU(a|A) - \max_{a \in \mathcal{A}} EU(a).$

Measures of Relevance II (van Rooij)

New information A is relevant if

- it changes expected utility.
- it is the more relevant the more it changes it.

$$UV''(A) = |\max_{a \in \mathcal{A}} EU(a|A) - \max_{a \in \mathcal{A}} EU(a)|.$$

Application (van Rooij)

Somewhere in the streets of Amsterdam...

- 1. J: Where can I buy an Italian newspaper?
- 2. E: At the station and at the Palace but nowhere else. (S)
- 3. E: At the station. (A) / At the Palace. (B)

The answers S, A and B are equally useful with respect to conveyed information and the inquirer's goals.
Game Theory

Overview

- Strategic games in normal form
- Equilibrium concepts
- Games in extensive form
- Signalling games
- Application: Resolving Ambiguities (Parikh)

Strategic games in normal form

Strategic games in normal form

- Equilibrium concepts
- Games in extensive form
- Signalling games
- Application: Resolving Ambiguities

Basic distinctions in game theory

Static vs. dynamic games:

- Static game: In a static game every player performs only one action, and all actions are performed simultaneously.
- Dynamic game: In dynamic games there is at least one possibility to perform several actions in sequence.

Basic distinctions in game theory

Cooperative v.s. non-cooperative games

- Cooperative: In a cooperative game, players are free to make binding agreements in pre-play communications. Especially, this means that players can form coalitions.
- Non-cooperative: In non-cooperative games no binding agreements are possible and each player plays for himself.

Basic distinctions in game theory

Normal form vs. extensive form

- Normal form: Representation in matrix form.
- Extensive form: Representation in tree form. It is more suitable for dynamic games.

A strategic game in normal form

Components:

- 1. **Players:** games are played by players. If there are n players, then we represent them by the numbers 1, . . . , n.
- 2. Action sets: each player can choose from a set of actions. It may be different for different players. Hence, if there are n players, then there are n action sets A_1, \ldots, A_n .
- Payoffs: each player has preferences over choices of actions. We represent the preferences by payoff functions u_i.

Representation of Strategic Games

A static game can be represented by a **payoff matrix**.

Column Player

Row Player

	а	b	actions
С	payoffs	payoffs	
d	payoffs	payoffs	
actions			

Representation of Strategic Games

In case of two–player games with two possible actions for each player:

Prisoner's dilemma

Player: Two imprisoned criminals
Actions: c *cooperate*; d *defect*

Prisoner's dilemma

Battle of the sexes

- Player: A man (row) and a woman (column).
- Actions: b go to boxing; c go to concert.

$$\begin{array}{c|c}
b & c \\
b & 2,1 & 0,0 \\
c & 0,0 & 1,2
\end{array}$$

Battle of the sexes

Stag hunt

Player: Two hunter.
Actions: s hunting stag; r hunting rabbit.

Chicken

Player: Two young guys. Actions: r *racing*; s *swerve*.

Equilibrium concepts

- Strategic games in normal form
- > Equilibrium concepts
- Games in extensive form
- Signalling games
- Application: Resolving Ambiguities

- Weak and strong dominance
- Nash equilibrium
- Pareto Optimality

Weak and Strong Dominance

- An action a of player i strictly dominates an action b iff the utility of playing a is strictly higher than the utility of playing b whatever actions the other players choose.
- An action a of player i weakly dominates an action b iff the utility of playing a is is at least as high as the utility of playing b whatever actions the other players choose.

Prisoner's dilemma

defect (*d*) **strictly dominates** all other actions:

Prisoner's dilemma

Nash equilibrium (2 player)

An action pair (*a*,*b*) is a **weak Nash** equilibrium iff

- 1. there is no action a' such that $u_1(a',b) > u_1(a,b)$
- 2. there is no action b' such that $u_2(a,b') > u_2(a,b)$

Nash equilibrium (2 player)

An action pair (*a*,*b*) is a **strong Nash** equilibrium iff

- 1. for all actions $a' \neq a$: $u_1(a',b) < u_1(a,b)$ 2. for all actions $b' \neq b$:
- 2. for all actions $b' \neq b$: $u_2(a,b') < u_2(a,b)$

Battle of the sexes

None of the actions is strictly dominating.
Two strict Nash equilibria: (*b*,*b*), (*c*,*c*)

$$\begin{array}{c|c}
b & c \\
b & 2,1 & 0,0 \\
c & 0,0 & 1,2
\end{array}$$

Battle of the sexes

Pareto Nash equilibrium (2 player)

An action pair (a,b) is a **Pareto Nash equilibrium** iff there is no other Nash equilibrium (a',b') such that 1. or 2. holds: 1. $u_1(a',b') > u_1(a,b)$ and $u_2(a',b') \ge u_2(a,b)$ 2. $u_1(a',b') \ge u_1(a,b)$ and $u_2(a',b') > u_2(a,b)$

Stag hunt

Two Nash equilibria: (s,s), (r,r). One Pareto Nash equilibrium: (s,s).

Games in extensive form

- Strategic games in normal form
- Equilibrium concepts
- Games in extensive form
- Signalling games
- Application: Resolving Ambiguities

A Tree

Components of a Game in Extensive Form

- **1. Players:** $N = \{1, ..., n\}$ a set of n players.
 - Nature is a special player with number 0.
 - Each node in a game tree is assigned to a player.
- 2. **Moves:** Each edge in a game tree is labelled by an action.
- 3. Information sets: To each node n which is assigned to a player $i \in N$, a set of nodes is given which represents i's knowledge at n.

- 4. **Outcomes:** There is a set of *outcomes.* Each terminal node represents one outcome.
- Payoffs: For each player i∈N there exists a payoff (or utility) function u_i which assigns a real value to each of the outcomes.
- 6. Nodes assigned to 0 (Nature) are nodes where random moves can occur.

A Game Tree

Signalling games

- Strategic games in normal form
- Equilibrium concepts
- Games in extensive form
- Signalling games
- Application: Resolving Ambiguities

- We consider only signalling games with two players:
 - \Box a speaker S,
 - □a hearer H.
- Signalling games are Bayesian games in extensive form; i.e. players may have private knowledge.

Private knowledge

- We consider only cases where the speaker has additional private knowledge.
- Whatever the hearer knows is common knowledge.
- The private knowledge of a player is called the player's type.
- It is assumed that the hearer has certain expectations about the speaker's type.

Signalling Game

A signalling game is a tuple:

 $\langle N,\Theta,\,p,\,(A_1,A_2),\,(u_1,\,u_2)\rangle$

- N: Set of two players S,H.
- Θ: Set of types representing the speakers private information.
- p: A probability measure over Θ representing the hearer's expectations about the speaker's type.

(A₁,A₂): the speaker's and hearer's action sets.

(u₁,u₂): the speaker's and hearer's payoff functions with

$$u_i: A_1 \times A_2 \times \Theta \rightarrow \mathbf{R}$$

Playing a signalling game

- 1. At the root node a type is assigned to the speaker.
- 2. The game starts with a move by the speaker.
- 3. The speaker's move is followed by a move by the hearer.
- 4. This ends the game.

Strategies in a Signalling Game

- Strategies are functions from the agents information sets into their action sets.
- The speaker's information set is identified with his type $\theta \in \Theta$.
- The hearer's information set is identified with the speaker's previous move $a \in A_1$.

$$S: \Theta \rightarrow A_1 \text{ and } H: A_1 \rightarrow A_2$$

Resolving Ambiguities Prashant Parikh

- Strategic games in normal form
- Equilibrium concepts
- Games in extensive form
- Signalling games
- > Application: Resolving Ambiguities

The Standard Example

- a) Every ten minutes a man gets mugged in New York. (A)
- b) Every ten minutes some man or other gets mugged in New York. (F)
- c) Every ten minutes a particular man gets mugged in New York. (F')
- ➤ How to read the quantifiers in a)?
Abbreviations

- φ: Meaning of `every ten minutes some man or other gets mugged in New York.'
 - φ': Meaning of `Every ten minutes a particular man gets mugged in New York.'
- θ_1 : State where the speaker knows that φ .
 - θ_2 : State where the speaker knows that ϕ '.

A Representation

The Strategies

The Payoffs

The Payoffs Left: In situation θ_1 Right: In situation θ_2

Expected Payoffs

$$\begin{array}{c|ccc} H & H' \\ S & 8 & -8 \\ S' & 9.7 & -8.3 \\ S'' & 5.3 & 7.3 \\ S''' & 7 & 7 \end{array}$$

The Expected Payoffs Probability of θ_1 : $\rho = 0.9$ Probability of θ_2 : $\rho' = 0.1$

Analysis

- There are two Nash equilibria (S',H) and (S'',H')
- The first one is also a Pareto Nash equilibrium.
- With (S',H) the utterance (A) should be interpreted as meaning (F):
- (A) Every ten minutes a man gets mugged in New York.
- (F) Every ten minutes some man or other gets mugged in New York.