Two Theories of Implicatures (Parikh, Jäger)

Day 3 – August, 9th

Overview

- Prashant Parikh: A disambiguation based approach
- Gerhard Jäger: A dynamic approach

A disambiguation based approach

Prashant Parikh (2001) The Use of Language

Repetition: The Standard Example

- a) Every ten minutes a man gets mugged in New York. (A)
- b) Every ten minutes some man or other gets mugged in New York. (F)
- c) Every ten minutes a particular man gets mugged in New York. (F')
- ➤ How to read the quantifiers in a)?

Abbreviations

- φ: Meaning of `every ten minutes some man or other gets mugged in New York.'
 - φ': Meaning of `Every ten minutes a particular man gets mugged in New York.'
- θ_1 : State where the speaker knows that φ .
 - θ_2 : State where the speaker knows that ϕ '.

A Representation

General Characteristics

- There is a form A that is ambiguous between meanings φ and φ'.
- There are more complex forms F, F' which can only be interpreted as meaning φ and φ'.
- The speaker but not the hearer knows whether φ (type θ₁) or φ' (type θ₂) is true.

- It is assumed that interlocutors agree on a Pareto Nash equilibria (S,H).
- The actual interpretation of a form is the meaning assigned to it by the hearer's strategy H.

Implicatures

Classification of Implicatures

Parikh (2001) distinguishes between:

- Type I implicatures: There exists a decision problem that is directly affected.
- Type II implicatures: An implicature adds to the information of the addressee without directly influencing any immediate choice of action.

Examples of Type I implicatures

- A stands in front of his obviously immobilised car.
 A: I am out of petrol.
 B: There is a garage around the corner.
 +>The garage is open and sells petrol.
- Assume that speaker S and hearer H have to attend a talk just after 4 p.m. S utters the sentence:
 S: It's 4 p.m. (A)

+> S and H should go for the talk. (ψ)

A model for a type I implicature

The Example

- Assume that speaker S and hearer H have to attend a talk just after 4 p.m. S utters the sentence:
 - S: It's 4 p.m. (A)
 - +> S and H should go for the talk. (ψ)

The possible worlds

The set of possible worlds Ω has elements:

- s₁: it is 4 p.m. and the speaker wants to communicate the implicature ψ that it is time to go for the talk.
- s₂: it is 4 p.m. and the speaker wants to communicate only the literal content φ.

The Speaker's types

Assumption: the speaker knows the actual world.

Types:

- $\Box \theta_1 = \{s_1\}$: speaker wants to communicate the implicature ψ .
- $\Box \theta_2 = \{s_2\}$: speaker wants to communicate the literal meaning φ .

Hearer's expectations about speaker's types

Parikh's model assumes that it is much more probable that the speaker wants to communicate the implicature ψ.

Example values:

 $p(\theta_1) = 0.7 \text{ and } p(\theta_2) = 0.3$

The speaker's action set

- The speaker chooses between the following forms:
- 1. $A \equiv It's 4 pm. ([A] = \phi)$
- 2. $B \equiv$ It's 4 pm. Let's go for the talk. ([B] = $\psi \land \phi$)
- 3. $\emptyset \equiv$ silence.

The hearer's action set

- The hearer interprets utterances by meanings.
- Parikh's model assumes that an utterance can be interpreted by any meaning χ which is stronger than its literal meaning φ.

The Game Tree

The Utility Functions

Parikh decomposes the utility functions into four additive parts:

- 1. A utility measure that depends on the complexity of the form and processing effort.
- 2. A utility measure that depends on the correctness of interpretation.
- 3. A utility measure that depends on the value of information.
- 4. A utility measure that depends on the intrinsic value of the implicated information.

Utility Value of Information

- Derived from a decision problem.
- Hearer has to decide between:
 - \Box going to the talk
 - □ stay

probability	state	going	staying
0.2	time to go	10	-10
0.8	not time to go	-2	10

Utility Value of Information

Before learning 'It's 4 p.m.': EU(leave) = 0.2×10 + 0.8×(-2) = 0.4 EU(not-leave) = 0.2×(-10) + 0.8×10 = 6

- After learning 'It's 4 p.m.'(A), hence that it is time to leave:
 - \Box EU(leave|A) = 1×10 = 10
 - \Box EU(not-leave|A) = 1×(-10) = -10
- Utility value of learning 'It's 4 p.m.' (A):
 UV(A) = EU(leave|A) EU(not-leave) = 10 6 = 4

Other Utilities

- Intrinsic Value of Implicature: 5
- Cost of misinterpretation -2
 - In addition, Parikh assumes that in case of miscommunication the utility value of information is lost (*)
- Various costs due to complexity and processing effort.
 - □ Higher for speaker than hearer.

The Game Tree

Some Variations of the Payoffs

	(a)	(b)	(c)	(d)
$\langle \theta_1, B, \psi \rangle$	4, 5	0, 1	-1, 0	-5, -4
$\langle \theta_1, A, \varphi \rangle$	0, 1	-4, -3	0, 1	-4, -3
$\langle \theta_1, A, \psi \rangle$	6,7	2, 3	1, 2	-3, -2
$\langle \theta_2, A, \varphi \rangle$	2, 3	-2, -1	2, 3	-2, -1
$\langle \theta_2, A, \psi \rangle$	-1, 0	-5, -4	-1, 0	-5, -4
$\langle \theta_2, \emptyset, \top \rangle$	0, 0	0, 0	0, 0	0, 0

-5

-(4+5

- a) without (*)
- b) minus utility value
- c) minus intr. val. of implic.
- d) minus both

Result

In all variations it turns out that the strategy pair (S,H) with
□ S(θ₁) = It's 4 p.m., S(θ₂) = silence, and
□ H(It's 4 p.m) = [It's 4 p.m] ∧ [Let's go to the talk]

is Pareto optimal.

A Dynamic Approach

Gerhard Jäger (2006) Game dynamics connects semantics and pragmatics

General

- Jäger (2006) formulates a theory of implicatures in the framework of Best Response Dynamic (Hofbauer & Sigmund, 1998), which is a variation of evolutionary game theory.
- We will reformulate his theory using Cournot dynamics, a non-evolutionary and technically much simpler learning model.

Overview

An Example: Scalar Implicatures
The Model
Other Implicatures

Scalar Implicatures

The Example

We consider the standard example:

Some of the boys came to the party. +> Not all of the boys came to the party.

Possible Worlds

 w_1 : All boys came to the party.

- w_2 : Some but not all boys came to the party.
- w_3 : No boy came to the party.

Possible Forms and their Meanings

- F_1 : "Some of the boys came to the party."
- F₂: "All of the boys came to the party."
- F_3 : "None of the boys came to the party."
- F_4 : "Some but not all of the boys came to the party."

$$\llbracket F_1 \rrbracket = \{ w_1, w_2 \}$$

$$\llbracket F_2 \rrbracket = \{ w_1 \}$$

$$\llbracket F_3 \rrbracket = \{ w_2 \}$$

$$\llbracket F_4 \rrbracket = \{ w_3 \}$$

Complexities

- F_1 , F_2 , and F_3 are about equally complex.
- F_4 is much more complex than the other forms.
- It is an essential assumption of the model that F₄ is so complex that the speaker will rather be vague than using F₄.
- F_1 : "Some of the boys came to the party."
- F₂: "All of the boys came to the party."
- F_3 : "None of the boys came to the party."
- F₄: "Some but not all of the boys came to the party."

The first Stage

- Hearer's strategy determined by semantics.
- Speaker is truthful, else the strategy is arbitrary.

The second Stage

- Hearer's strategy unchanged.
- Speaker chooses best strategy given hearer's strategy.

The third Stage

- Speaker's strategy unchanged.
- Hearer chooses best strategy given speaker's strategy.

$$\begin{array}{c|c} S_2 & H_2 \\ \hline w_1 \mapsto F_2 & F_1 \mapsto \{w_2\} \\ w_2 \mapsto F_1 & F_2 \mapsto \{w_1\} \\ w_3 \mapsto F_3 & F_3 \mapsto \{w_3\} \\ & & F_4 \mapsto \{w_2\} \end{array}$$

Result

- The third stage is stabile. Neither the speaker nor the hearer can improve the strategy.
- The form

 F_1 : `Some of the boys came to the party.' is now interpreted as meaning that some but not all of them came.

This explains the implicature.

The Model

The Signalling Game

- $\Omega = \{w_1, w_2, w_3\}$ the set of possible worlds.
- $\Theta = \{\Theta_1, \Theta_2, \Theta_3\} = \{\{w_1\}, \{w_2\}, \{w_3\}\}\$ the set of speaker's types.

(Speaker knows true state of the world)

- $p(\theta_i)=1/4$: hearer's expectation about types.
- $A_1 = \{F_1, F_2, F_3, F_3\}$ the speaker's action set.
- $A_2 = \wp(\Omega)$ the hearer's action set. (Speaker chooses a Form, hearer an interpretation)

- The payoff function divides in two additive parts:
 - □ c(.): measures complexity of forms: c(F₁) = c(F₂) = c(F₃) = 1; c(F₄) = 3.
 □ inf(θ,M): measures informativity of information M ⊂ Ω relative to speaker's type θ = {w}:

$$\inf(\theta, M) = \log_2 P_H(w|M)$$

The game is a game of pure coordination, i.e. speaker's and hearer's utilities coincide:

$$u(\theta, F, M) = \inf(\theta, M) - c(F).$$

Additional Constraints

It is assumed that the speaker cannot mislead the hearer; i.e. if the speaker knows that the hearer interprets F as M, then he can only use F if he knows that M is true, i.e. if θ ⊆ M.

The Dynamics

- The dynamic model consists of a sequence of synchronic stages.
- Each synchronic stage is a strategy pair (S_i,H_i), i = 1,...,n
- In the first stage (i=1),
 - the hearer interprets forms by their (literal) semantic meaning.
 - \Box the speaker's strategy is arbitrary.

The Second Stage (S₂,H₂)

The hearer's strategy H₂ is identical to H₁.
 The speaker's strategy S₂ is a **best** *response* to H₁:
 EU(S₂,H₂) = max_S EU(S,H₂)

with

 $EU(S,H) = \sum_{\theta \in \Theta} u(\theta, S(\theta), H(S(\theta)))$

The Third Stage (S₃,H₃)

- The speaker's strategy S₃ is identical to S₂.
- The hearer's strategy H₃ is a best response to S₃:
 - $EU(S_3,H_3) = max_H EU(S_3,H)$

- This process is iterated until choosing best responses doesn't improve strategies.
- The resulting strategy pair (S,H) must be a weak Nash equilibrium.
- Remark: Evolutionary Best Response would stop only if strong Nash equilibria are reached.

Implicatures

An implicature F +> ψ is explained if in the final stable state H(F) = ψ.

Other Implicatures

I-Implicatures

What is expressed simply is stereotypically exemplified.

- John's book is good. +> The book that John is reading or that he has written is good.
- 2. A secretary called me in. +> A female secretary called me in.
- 3. There is a road to the right. +> There is a hard-surfaced road to the right.

An Example

There is a road to the right.

- w₁: hard surfaced road.
- w₂: soft surfaced road.
- F₁: road
- F₂: hard surfaced road
- F₃: soft surfaced road

The first Stage

- Hearer's strategy determined by semantics.
- Speaker is truthful, else the strategy is arbitrary.

$$\begin{array}{c|c} S_0 & H_0 \\ \hline w_1 \mapsto F_2 & F_1 \mapsto \{w_1, w_2\} \\ w_2 \mapsto F_3 & F_2 \mapsto \{w_1\} \\ & & F_3 \mapsto \{w_2\} \end{array}$$

The second Stage

- Hearer's strategy unchanged.
- Speaker chooses best strategy given hearer's strategy.

$$\begin{array}{c|c} S_1 & H_1 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1, w_2\} \\ w_2 \mapsto F_3 & F_2 \mapsto \{w_1\} \\ & F_3 \mapsto \{w_2\} \end{array}$$

The third Stage

- Speaker's strategy unchanged.
- Hearer chooses best strategy given speaker's strategy.
- Any interpretation of F_2 below yields a best response.

$$\begin{array}{c|c} S_2 & H_2 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1\} \\ w_2 \mapsto F_3 & F_2 \mapsto ? \\ & F_3 \mapsto \{w_2\} \end{array}$$

M-implicatures

What is said in an abnormal way isn't normal.

- 1. Bill stopped the car. +> He used the foot brake.
- 2. Bill caused the car to stop. +> He did it in an unexpected way.
- 3. Sue smiled. +> Sue smiled in a regular way.
- 4. Sue lifted the corners of her lips. +> Sue produced an artificial smile.

An Example

- 1. Sue smiled. +> Sue smiled in a regular way.
- 2. Sue lifted the corners of her lips. +> Sue produced an artificial smile.
 - w₁: Sue smiles genuinely.
 - w₂: Sue produces artificial smile.
 - F₁: to smile.
 - F_2 : to lift the corners of the lips.

The first Stage

- Hearer's strategy determined by semantics.
- Speaker is truthful, else the strategy is arbitrary.

$$\begin{array}{|c|c|c|c|c|}\hline S_0 & H_0 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1, w_2\} \\ \hline w_2 \mapsto F_2 & F_2 \mapsto \{w_1, w_2\} \end{array} \end{array}$$

The second Stage

- Hearer's strategy unchanged.
- Speaker chooses best strategy given hearer's strategy.

$$\begin{array}{c|c} S_1 & H_1 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1, w_2\} \\ w_2 \mapsto F_1 & F_2 \mapsto \{w_1, w_2\} \end{array} \end{array}$$

The third Stage

- Speaker's strategy unchanged.
- Hearer chooses best strategy given speaker's strategy.
- Any interpretation of F_2 below yields a best response.

$$\begin{array}{c|c} S_2 & H_2 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1, w_2\} \\ w_2 \mapsto F_1 & F_2 \mapsto ? \end{array}$$

The third Stage continued

There are three possibilities:

$$\begin{array}{|c|c|c|c|}\hline S_2 & H_2 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1, w_2\} \\ w_2 \mapsto F_1 & F_2 \mapsto \{w_1, w_2\} \\ \hline \end{array}$$

A fourth Stage

Speaker's optimisation can then lead to:

$$\begin{array}{c|c} S_3 & H_3 \\ \hline w_1 \mapsto F_1 & F_1 \mapsto \{w_1, w_2\} \\ w_2 \mapsto F_1 & F_2 \mapsto \{w_1, w_2\} \end{array}$$

A fifth Stage

Speaker's optimisation can then lead to:

