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Abstract

In this paper we consider an application of the theory of non–well-
founded sets to the modelling of epistemic updates triggered by assertions
in dialogue. We concentrate mainly on what we might call defective di-
alogue, i.e. dialogue in epistemic contexts where the speaker has either
erroneous beliefs or is not sincere in his language use. We develop our
theory within a special possible worlds framework which uses AFA set
theory for representing information states of dialogue participants. We
first characterise the use of assertions in ideal dialogue situations and then
show how pragmatic principles connected to perspectives and speaker’s in-
tentions define extended uses in defective situations. On the formal level,
the pragmatic considerations lead to the introduction of operators which
can be used systematically to extend the domain of assertions.

1 Introduction

In a possible worlds approach the knowledge of an agent is identified with the
set of all worlds where his beliefs hold true (Hintikka, 1962). In a model of com-
munication, these worlds must contain information about the beliefs about each
other. Due to the foundation axiom in set theory it is not possible to model these
worlds as simple structured objects. Instead, it is necessary to use a relational
model in the form of a Kripke structure (Fagin et al., 1995). Working in Aczel’s
(1988) set theory with anti-foundation axiom allows a direct modelling of circu-
lar and self-referential structures in terms of set membership. It is well known
that this can be exploited for defining more elegant update operations which
model learning effects in communication (Gerbrandy & Groeneveld, 1997). In
this paper we show how this approach can be used for analysing learning ef-
fects in defective communication, i.e. communication where basic epistemic
constraints, as e.g. truthfulness or sincerity, are violated.

1.1 Assertions

How can we characterise the dialogue situations where a sentence can be asserted
by the speaker and interpreted by the hearer, and what do the participants
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learn from the fact that it has been asserted? We assume that the speaker can
reasonably assert a sentence iff the epistemic update triggered by this assertion
leads to a desired outcome. The hearer can interpret an assertion as long as the
fact that the assertion has been made does not contradict his beliefs.

We may start with the following simple characterisation: If we identify the
information which is conveyed by an assertion with the pure semantics of the
uttered sentence, and if ψ represents the semantic meaning, then ψ can be as-
serted iff ψ is true. The interlocutors not only learn that the asserted sentence
is true but also that the other participant learns that it is true, and that both
know that the other one learns that it is true, etc. I.e. it will become mutually
known that the sentence is true. This must be represented by the update po-
tential of assertions, and we will do this by using mutual update operations on
the belief states of interlocutors.

(1) Helga calls up her son Stephan who lives in a small town in the Alps and
asks him whether he wants to visit her in Munich. Stephan answers: “It
is snowing in the mountains. I don’t like to drive then.”

Here, we consider the sentence ψ: “It is snowing in the mountains.” Its ut-
terance results in a situation where both speaker and hearer know that it is
snowing in the mountains, and that this is mutual knowledge. But this would
capture only part of the conveyed information. Helga and Stephan learn also
e.g. that Stephan knows that ψ, and that he assumes that Helga does not already
know that ψ. Furthermore, it should hold that Helga believes that Stephan can
know whether ψ, and that Stephan does not want to mislead her etc. We call a
dialogue situation where it is common knowledge that all participants have only
true beliefs and that the speaker does not want to mislead the hearer an ideal
dialogue situation. And we call an ideal situation a basic situation for ψ if all
semantic and pragmatic constraints hold which are necessary for a reasonable
assertion and successful interpretation.

Now let us assume that we have characterised the conditions and the update
effects of assertions in ideal situations. What about non–ideal situations, i.e.
defective situations where beliefs are not true, or where speakers are insincere?
Here the perspectives of the participants play an important role, i.e. the limited
information of dialogue participants and the fact that participants can exploit
the limited information of other participants. In the following example of a non–
basic situation both interlocutors believe that all the above mentioned pragmatic
and semantic conditions hold but, in fact, the uttered sentence is not true:

(2) Helga calls up her son Stephan and asks him whether he wants to visit
her in Munich. Stephan answers: “It is snowing in the mountains. I don’t
like to drive then.” But he has not checked the weather for some time,
and it is now raining and the streets are clear.

Both will update their beliefs in the same way as in the basic situation. Hence,
if we have an update operation for the basic case, we can simply extend it to
this wider class and get a correct description of the utterance effects. What
happens if only from the perspective of the speaker the basic conditions hold?

(3) Helga calls up her son Stephan and asks him whether he wants to visit her
in Munich. Stephan answers: “It is snowing in the mountains.” Helga has
just talked to her daughter, who lives next to Stephan, and knows that
the weather has changed, and that the streets are clear.

2



S still feels justified to make his utterance, and the hearer may notice this. The
update of the speaker remains the same as in the basic situation but the hearer
should update only his representation of the speaker’s beliefs. Hence we can
again derive the update operation for this case from the basic one. We can
think of a situation where the speaker thinks that he can mislead the hearer,
and where the hearer is aware of the speaker’s attempt.

(4) Helga calls up her son Stephan and asks him whether he wants to visit
her in Munich. Stephan answers: “It is snowing in the mountains.” Helga
knows from her daughter that it does not snow at all, and she has also
heard that Stephan has a new girl–friend and prefers to stay at home this
weekend.

This is a situation where the utterance of “It is snowing in the mountains” is
reasonable, and it will lead to a new update of the information states of the
participants. But it is important that the hearer thinks that the speaker must
believe that it is a successful lie. We can see this in contrast to (5):

(5) Helga visits her son Stephan and they take a walk through the town. It
is a sunny summer day, and she asks him whether he wants to take her
to Munich this day. Stephan answers: “It is snowing in the mountains. I
don’t like to drive then.”

This answer must be absolutely unintelligible for H. It can’t be a false assertion,
nor a lie. It can’t result in a well–defined update of their belief states.

Our central assumption is: If the speaker believes that he can successfully
assert some sentence, and the hearer is able to make sense of his utterance, then
this is sufficient for the assertion to lead to a well–defined update of their mutual
beliefs. We mean by “being able to make sense” of an utterance that the fact
that an assertion has beed made does not contradict the hearer’s beliefs.

The dependence on the perspectives explains why it is possible to extend the
use of an assertion to new situations. On the other hand, it also leads to stronger
conditions for the basic situations. Hence, there are two issues which we will
address. The first one concerns the extension of a use to new situations, the
other one the additional pragmatic restrictions in the basic cases. In addition to
perspectives we consider speaker’s goals. We need them in order to introduce
a sincerity condition for the base case, for example, to explain the difference
between (2) and (3).1

1.2 Non–well–founded sets

In Section 2 we introduce our general framework. We represent dialogue situ-
ations and the beliefs of dialogue participants within a special possible worlds
framework (Sec. 2). We will build up upon an the approach developed by Ger-
brandy and Groeneveld (1997). Possible worlds w, or possibilities, are triples
〈sw, w(S), w(H)〉. The first component represents the situation talked about,
the second and third the belief sets of speaker and hearer. The sets w(S) and
w(H) are again sets of possibilities. As they are proper parts of w, standard set

1In (3) Helga can interpret Stephan’s utterance as a lie only because she knows that he does
not want to visit her, hence the result of a successful lie would fit his goals. In Example (2)
she can infer that his utterance is due to an error because she assumes that he is sincere.
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theory would not allow that w is itself an element of w(S) or w(H). But clearly,
if the belief sets collect all possibilities that an agent believes to be possible, then
a belief set w(X) can only represent a true belief iff w ∈ w(X). In standard
possible worlds frameworks (Hintikka, 1962; Fagin et al., 1995), this problem is
solved by using relational models, i.e. an agent believes in w that a world v is
possible iff w stands in a certain accessibility relation R to v. A disadvantage
of this approach is that the belief sets, here the set of all worlds accessible to
an agent, do no more enter into the identity conditions of worlds. Using AFA
set theory (Aczel, 1988; Barwise & Moss, 1996) we can solve both problems,
i.e. possibilities w can have belief sets which contain w, and possibilities are
identical if, and only if their situations talked about and their belief sets are
identical. In AFA set theory, knowledge updates can be reduced to simple set
theoretic manipulations of possibilities which leads to elegant and perspicuous
mathematical representations (Gerbrandy & Groeneveld, 1997).

1.3 Assertions in AFA set theory

In Section 3 we present our basic considerations concerning the role of perspec-
tives (Sec. 3.1) and speaker’s goals (Sec. 3.2) in dialogue. There we introduce
operators linked to the perspectives of speaker and hearer which allow us to
derive extended classes of situations where the speaker believes to be justified
in making an assertion and where the hearer can make sense of an assertion. If
M is a class where the use of an assertion is well–defined, then we can apply
the operators for speaker and hearer to M and get the classes where from the
perspective of speaker or hearer the assertion is justified. One of the major
problems is to characterise the belief–structures of the dialogue participants in
situations which are possible candidates for an extended use, i.e. to characterise
the class of dialogue situations where it makes sense to ask whether an extended
use of an assertion is possible. In this regard, we introduce a class of possibilities
with internal hierarchical structure, H(T ), in Section 3.3. The motivation for
this structure is closely related to the role of perspectives in deriving extended
uses. This defines the class of intended applications of our theory.

In Sections 4 and 5 we show in detail how to derive the basic cases and
extended uses. We start with the mutual update operations which are defined
by the pure semantics of an assertion in ideal dialogue situations. We consider
two groups of pragmatic principles: a) principles linked to perspectives, and b)
rationality principles linked to speaker’s goals. We will divide the main body of
our investigation (Sec. 4/5) into two parts. In the first part we consider only
principles linked to perspectives and their interaction with the pure semantics of
an assertion (Sec. 4). This part again divides into a sub–part (Sec. 4.1) where we
define the pragmatically basic situations where a sentence can be asserted, and a
second sub–part (Sec. 4.2) where we show how perspectives give rise to extended
uses. The principles linked to perspectives provide for the justification of these
extended uses and allow us to define the update operations for a derived use of
an assertion in terms of the update operation which represents the underlying
use. In the second part we discuss effects of rationality principles connected to
speaker’s goals (Sec. 5). This section again divides into a sub–part (Sec. 5.1)
where we consider the base case problem, and a sub–part (Sec. 5.2) where we
consider derived uses of assertions. The underlying circularity of structures and
conditions makes the whole enterprise a non–trivial one. In Section 6 we show
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how the examples are handled using our theory.

2 Possibilities in AFA set theory

The possibility approach is essentially a possible worlds approach, i.e. it iden-
tifies the beliefs of an individual with the set of all worlds which are possible
according to those beliefs. We denote the set of participants by DP = {S,H},
where S denotes the speaker, H the hearer. A possibility consists of a model
for the outer situation and information states for each participant, where those
states are again sets of possibilities. The outer situation describes the non–modal
part of the dialogue context. In case of e.g. assertions, this outer situation will
be identified with the situation talked about. The possibility approach was first
developed by J. Gerbrandy and W. Groeneveld in (1997). It is based on an ex-
tension of classical set theory, the theory of Non–Well–Founded Sets developed
by P. Aczel (1988).2 The original problem motivating the development of the
possibility approach was to define suitable update operations for dialogue. Here
the approach proved to be especially useful.3 Before we introduce possibilities,
we first state some of the fundamental theorems of AFA set theory.

AFA set theory

For Cantor or Frege, a set was an unrestricted collection of objects that satisfy
a certain predicate. Understood thus, a set can be seen as the semantic exten-
sion associated to a predicate. In an effort to avoid the paradoxes generated
by unrestricted comprehension, the cumulative conception of the set universe
emerged.4 Intuitively, we can think of the set universe as generated from base
sets by iterated application of a power set operation. The set universe is organ-
ised in levels where each higher level comprises all subsets of the lower levels.
In AFA set theory the emphasis shifts away from the cumulative conception.
Here, the aspect that is relevant to us is the conception of a set as a structured
object where the identity of objects follows from the identity of its constituents,
i.e. elements.

AFA set theory has no axiom of foundation. The following so-called Solution
Lemma can either be proved as a theorem in AFA set theory (Aczel, 1988) or
be introduced as an axiom (Barwise & Moss, 1996). In the latter case, it is the
axiom which replaces the axiom of foundation:

Theorem 2.1 (Solution Lemma) Let V[X] be the universe of sets over a
class X of urelements. A system of equations over X is a function e : X −→
V[X] \ X. Then, every system of equations has a unique solution; i.e. there
exists a unique function s : V[X] −→ V such that

s(m) = {s(n) | n ∈ m} for sets m
s(x) = s(e(x)) for urelements x ∈ X

2For more information about (AFA) set theory we can refer to (Barwise & Moss, 1996),
and for the possibility approach to the thesis of Gerbrandy (1998).

3There is a larger literature concerning the proper definition of updates in communica-
tion: (Jaspars, 1994), (Groeneveld, 1995), (Gerbrandy & Groeneveld, 1997), (Zeevat, 1997),
(Gerbrandy, 1998), (Baltag, Moss, Solecki, 1999), (Baltag, 1999), (Baltag et al., 2006) and
more.

4For the history of this development see (Fraenkel & Bar-Hillel, 1958).
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To see the significance of this lemma, let us consider an arbitrary set m. We
can associate tom the set of equations n = {k|k ∈ n}, where n is in the transitive
hull of m. In a second step we can replace each set n by a distinct urelement un,
which leads to the system of equations un = {uk | k ∈ n} =: e(un). A solution
to this system of equations is a function s that assigns to each urelement un

a set s(un) such that s(un) = {s(uk) | k ∈ n} = {s(e(uk)) | k ∈ n}. We can
think of the system of equations as a description of the internal structure of
a set. In standard set theory every set has such a structural description and
if a system of equations has a solution, then this solution is unique. AFA set
theory generalises this property by assuming that every system of equations
has a unique solution. Two sets are identical if they can be described by the
same system of equations, i.e if they have the same structural description. The
following identity condition follows from the Solution Lemma:

Theorem 2.2 A relation R ⊆ W ×W is a bisimulation, iff vRw implies that
sv = sw and for all X ∈ DP

∀v′ ∈ v(X) ∃w′ ∈ w(X) v′Rw′ and ∀w′ ∈ w(X) ∃v′ ∈ v(X) v′Rw′.

If R is a bisimulation, then vRw implies v = w.

Possibilities

In order to define certain subclasses of non–well–founded sets we need the fol-
lowing special fixed–point lemma:

Lemma 2.3 For each class M there exists a unique maximal class C which
satisfies:

C = {〈m,x, y〉 |m ∈M & x, y ⊆ C} (∗)

C can be constructed as a fixed-point of the operator ΓX := {〈m,x, y〉 ∈ X |m ∈
M & x, y ⊆ X}. Let C0 := V, Cn+1 := Γ Cn, C :=

⋂
n C

n, then C is a fixed–
point of Γ and the largest class that satisfies (∗).5

Let M be a class of models for the possible outer situations. We define
possibilities and information states in the following way:

• A possibility w is a triple 〈sw, w(S), w(H)〉 where sw ∈ M and w(S) and
w(H) are information states.

• An information state σ is a set of possibilities.

sw describes an outer situation, w(S) and w(H) the set of worlds S and H
believe to be possible. We denote the class of all possibilities with W. The
theory of non–well–founded sets allows for sets containing themselves, hence it
is possible that there exist possibilities w with w ∈ w(X), X ∈ DP.

Let L be a language of predicate logic for the class M. We assume that L
contains all the predicates the dialogue participants can use to talk about an
outer situation. Let w = 〈sw, w(S), w(H)〉 be a possibility. We define truth
conditions for ϕ ∈ L:

w |= ϕ iff sw |= ϕ, ϕ a sentence in L.
5For the set–theoretic machinery behind fixed–point constructions we refer to (Aczel, 1988;

Barwise & Moss, 1996).
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For a dialogue participant X a possibility w is epistemically possible in v iff
w ∈ v(X). X believes that ϕ in w iff ϕ holds in all his epistemic alternatives in w.
We write w |= 2Xϕ iff ∀v ∈ w(X) v |= ϕ, and w |= 3Xϕ iff ∃v ∈ w(X) v |= ϕ.
If σ is an information state, then we define σ |= ϕ iff ∀w ∈ σ w |= ϕ.

Until now, we did not restrict the properties of possibilities. A subclass
M ⊆ W is called transitive, iff ∀w ∈ M ∀X ∈ DP w(X) ⊆ M . Let I ⊆ W be
the largest transitive subclass with

∀w ∈ I ∀X ∈ DP ∀v ∈ w(X) : w(X) = v(X).

This property is called introspectivity. It means: (1) If a dialogue participant
believes ϕ, then he knows that he believes it; (2) if he does not believe that ϕ,
then he knows that he does not believe ϕ; and (3) it means that (1) and (2) are
common knowledge. Let T ⊆ I be the largest transitive subclass with

∀w ∈ T ∀X ∈ DPw ∈ w(X).

If w ∈ T , then w is for both participants an element of their sets of epistemic
alternatives. Hence, if a participant believes that ϕ, then ϕ must in fact hold.
Therefore, T denotes the class of possibilities where (1) the dialogue participants
can only have true beliefs, i.e. knowledge, and (2) where this fact is common
knowledge. The Anti–Foundation–Axiom (AFA) of the underlying set theory
guaranties that T is not empty.

We are only interested in non–contradicting information states of partici-
pants. This means that the set containing all their epistemic possibilities should
contain at least one element. Let İ denote the largest transitive subclass of I
with w ∈ İ ⇒ w(S) 6= ∅ 6= w(H).

If D(a) ⊆ W and a : D(a) −→W, then we call a a normal mutual update if

(NMU) a(w) = 〈sw, a(w(S)), a(w(H))〉 for w ∈ D(a),
a(σ) = {a(w) | w ∈ σ ∩D(a)} for information states σ.

It is clear that a normal mutual update is uniquely determined by its domain
D(a). If [ϕ] := {w ∈ T |w |= ϕ}, then the normal mutual update determined by
[ϕ] describes the effect of ‘mutually learning that ϕ’ in T . We can think of this
mutual learning as a step by step process of eliminating possibilities. First both
participants eliminate all possibilities where ϕ is not true from their information
states, and then they take the remaining possibilities and again eliminate all
worlds from both information states where ϕ is not true. This they repeat
again and again. Such definitions of update operations for possibilities have
been introduced by (Gerbrandy & Groeneveld, 1997). From the set theoretic
point of view, (NMU) defines a system of equations, i.e. a structural description
of the possibility that results from updating.

3 The Basic Considerations

In this section we describe the basic ideas of our approach and provide a defini-
tion of the class of possibilities which represent the intended applications. We
have already explained that we make a distinction between assertions in ideal
and non–ideal dialogue situations. We represent the class of ideal situations
by T , i.e. we assume that all participants have only true beliefs, and that this
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is common knowledge. The basic assertions of a sentence ψ are all uses of ψ
in T where all pragmatic and semantic constraints hold. We will denote this
class by B = ∇[ψ] ⊆ T . We can represent the effect of mutually learning ψ
by a normal mutual update a : [ψ] −→ İ, where [ψ] := {w ∈ T | w |= ψ}.
But if ψ is really asserted, then both participants not only learn that ψ holds
but also that all pragmatic conditions hold, i.e. they learn that they are in a
situation in B. This means that we can identify an assertion with the normal
mutual update a : B −→ İ. We then want to extend this basic use to non–ideal
situations. We will see that it is not possible to identify these non–ideal cases
with the complement İ \T . This forces us to describe the intended applications
more closely. In this respect we introduce in Section 3.3 a class H(T ). In the
same way as T represented the class of situations where it was reasonable to
ask whether a basic use is possible, H(T ) will represent the class where it is
reasonable to ask whether a derived extended use is possible. We extend B to
a class ∆(B) ⊆ H(T ) by iterated applications of certain operators which are
linked to perspectives. They reflect the way how perspectives restrict and allow
use and interpretation of assertions. Later (Sec. 4.1) we will see that we can also
derive B = ∇[ψ] by an iterated application of a related combination of operators
to [ψ]. We first (Sec. 3.1) motivate these operators and then characterise the
non–ideal dialogue situations where we intend to apply our theory.

3.1 Considerations concerning Perspectives

The Operators

We reconsider the assertion It is snowing in the mountains ψ in Example (1).
If we define the felicity conditions by pure semantics then asserting ψ would
be felicitous just in case the sentence ψ is true. We represent the situation of
Example (1) by a possibility w with6:

w = 〈ψ, {w}, {w, v}〉
v = 〈¬ψ, {v}, {w, v}〉 .

I.e. w is such that ψ holds, the speaker knows the actual situation, and the
hearer can not distinguish between w and v, where the only difference between
w and v is that ¬ψ holds in v. Hence the semantic condition for asserting ψ
holds. But, of course, the speaker S can rely for what he says only on what he
believes to be true. We assume throughout this paper that the speaker is only
justified to assert a sentence if he is convinced that he can assert it. For the
basic case this means that w(S) should be a subset of all situations where ψ
holds. This is, of course, in many real life situations too strong a requirement, as
agents may well perform an action if they think e.g. that the possible negative
results are negligible, or that it is highly unlikely that it has no success. If
M ⊆ İ is a class which represents some property of possibilities, e.g. a class
where some sentence can be asserted successfully, then we explicate the fact
that this property obtains under the perspective of a dialogue participant X in
world w as w(X) ⊆M .

Now we look at the hearer H. We see that one of his epistemic alternatives
is that ψ does not hold. It is also essential that the addressee does not already

6As we are only interested in the truth or falsity of ψ we denote the outer situation just
by ψ or ¬ψ.
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know that the uttered sentence is true. Hence, if M characterises the pragmatic
conditions for a reasonable use of an assertion, then the requirement that he
must believe that all his epistemic alternatives are situations in M is too strong.
We assume that he can make sense out of an assertion if there is at least one
epistemic alternative in his set of possibilities where the uttered sentence is
reasonable. Make sense means here that if the hearer learns that a sentence ψ
is asserted, then this fact does not contradict with what he believes about the
world. The actual situation w may have the property represented by a class M
under the perspective of a participant X iff w(X) ∩M 6= ∅.

We define two operators on subclasses of possibilities for each dialogue par-
ticipant X. They are closely related to the modal operators 2X and 3X , so we
denote them by the same symbols:

2XM := {w ∈ İ | w(X) ⊆M}
3XM := {w ∈ İ | w(X) ∩M 6= ∅}

With these operators at hand we can reformulate our observations as: S is
convinced that the actual world w belongs to M iff w ∈ 2SM ; Learning that M
does not contradict what H believes iff w ∈ 3HM . Notice that these operators
generate proper classes, even if M is a set. Our aim is to derive the class of
extended uses of an assertion by an iterated application of certain combinations
of these operators to the base B.

Combinations of Operators for Derived Uses

Let us now look at Example (2). We represent it by

u = 〈¬ψ, {w}, {w, v}〉 ,

where w and v are the situations from Example (1). We see that u(S) = w(S)
and u(H) = w(H). If the assertion leads to an update in w, then it should also
do so in u. If we assume that we have proven that w belongs to the basic cases
for a successful use, and if we assume that we have characterised these basic
uses by a class B, then we see also that u,w ∈ 2SB ∩3HB.

In general we assume that an assertion leads to a successful update if the
speaker is convinced that he can use the assertion, and if the fact that it is
asserted does not lead to a contradiction with the beliefs of the hearer. Hence,
if we have proven that an assertion leads to an update for a class of situationsM ,
then it also leads to an update of the speaker’s information state for situations
in 2SM , and to an update of the hearer’s information state for situations in
3HM .

If the speaker thinks that the hearer can make sense of an assertion, he
can exploit this fact and mislead him. This happens in case of lying. We can
see here how the limited perspective of one dialogue participant can give rise
to an extension of a dialogue act. If M is a class of possibilities where an
assertion leads to an update, then this act can be extended to the class where
S is convinced that they are in a situation in M or where H can at least make
sense of the assertion. This is the class 2S(M ∪ 3HM). If M ⊆ 3HM , the
definition of the extension can be simplified to 2S3HM . This will always be
the case.
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Now we can again turn to the perspective of H. Assume that the speaker S
is convinced of the truth of ψ but H knows it to be false. This was the case in
Example (3) which we can represent by:

s = 〈¬ψ, {w}, {s}〉 ,

where w is the situation from Example (1). We see that s ∈ 3H2SB, where
B denotes the class of basic situations for the assertion ψ (It is snowing in the
mountains). We assume H can make sense of the utterance if he thinks it is
possible that S might believe that he can assert ψ. Let M be again a class of
possibilities where we know that the assertion leads to an update. Then the
assertion also leads to an update of the hearer’s information state if H thinks
that it is possible that S is convinced that the actual situation belongs toM . I.e.
there exists an update of the hearer’s information state for the class 3H2SM .

We find in this way four operations which give us new classes where some
sentence can be asserted due to the perspective of one participant. Let M be
given. Then we classify the perspectivally derived classes as shown in Figure 1.

direct indirect
speaker 2SM 2S(M ∪3HM)
hearer 3HM 3H2SM

Figure 1: The four basic perspectival operations.

We can simplify 2S(M ∪ 3HM) to 2S3HM for the indirect operation for
the speaker if M ⊆ 3HM . We will see later that this is the case in all intended
applications.

It follows by introspectivity that we can not get new possible extensions if
we apply the direct operation twice for the same participant. I.e. for operators
P,Q ∈ {2,3}, M ⊆ İ and X ∈ DP we find that PXQXM = QXM .

To get a real extension it is necessary that S is convinced that he can perform
the act, and H must be able to make sense of this. It is not sufficient that only
one participant thinks that the act can be performed. Therefore, we have to
build intersections of the derived classes. We get the four groups of derived
cases as shown in Figure 2.

direct H indirect H
direct S 2SM ∩3HM 2SM ∩3H2SM
indirect S 2S3HM ∩3HM 2S3HM ∩3H2SM

Figure 2: The four derived classes.

3.2 Considerations concerning Speaker’s Goals

So far we have not taken speaker’s intentions into account. In Example (4)
Helga will interpret Stephan’s utterance as a lie because she knows that it fits
his intentions. This contrasts with Example (3) where she will interpret the
same utterance as a mistake because she has no reason to assume that he wants
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to mislead her. Also in a basic situation like in Example (1) the hearer not only
learns that some fact ψ holds and that the speaker believes in ψ but also that
he wants to inform her about this fact. The following example is identical with
Example (1) except for the fact that it is common knowledge that the speaker
wants to mislead the hearer in one possible context:

(6) Helga calls up her son Stephan. The last time she invited him, he pre-
tended that he could not come because of the bad weather, and she knows
that he does not like to come this time either. They both know that
Stephan would like to use the same excuse this time.

If we don’t consider speaker’s goals then this situation receives the same repre-
sentation as Example (1). But, of course, if Stephan says that it is snowing in
the mountains, then this should lead to a different update this time. He should
not be able to convince Helga. This means that our theory should predict that
it is not rational to make the assertion in this context. To this end we introduce
speaker’s intentions and rationality constraints connected to goals. We repre-
sent speaker’s goals by a function which gives us the desired states of the world
for all his epistemic alternatives, i.e. we redefine possibilities as triples of the
form 〈sw, 〈w(S), Gw

S 〉 , 〈w(H)〉〉 where GS is a function with domain w(S) and
values GS(v) ⊆ İ.7

Our model does not allow to rank possible outcomes, so we can’t expect it to
provide a real criterion for rational choice. Our goal–functions divide the class
of all possibilities into the class of possibilities where the goal is achieved, and
the class where it is not achieved. We formulate criteria which tell us whether
it is reasonable to choose an action as a means to reach the goal.

We formulate two elementary constraints which tell us whether it is rational
to assert a sentence relative to some goal G. Assume that there are given a
situation w, a mutual update a and a goal G(w). Let w be in the domain of a.
Then we postulate the following rationality constraints:

(R1) w 6∈ G(w)

(R2) a(w) ∈ G(w)

The first axiom claims that we should only perform an action if our goal is not
yet achieved. If it is, nothing should be done. The second axiom states that we
should only choose actions which allow us to reach our goal, i.e. the result a(w)
of the performance of a in w should be in G(w). We can also see that (R1)
and (R2) imply that a(w) 6= w. We can incorporate these constraints in our
operators but this will have to wait until Section 5. If (1) we know that there is
a class M where we have already established that a felicitous use of an assertion
is possible, and if (2) w is an element of one of the classes which can be derived
by a combination of perspectival operators for speaker and hearer, and if (3) the
update with the information connected to the fact that ψ has been asserted, i.e.
with ∆(B), satisfies the rationality conditions, then this proves that a felicitous
use of the assertion is also possible in w. (3) makes the criterion circular.

7The precise definition will follow in Section 5.
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3.3 Characterising the Intended Applications

We start with the felicity conditions and update effects of assertions as they are
defined by pure semantics, i.e. we assume that a sentence with semantic content
ψ can be asserted exactly iff the actual situation belongs to [ψ] := {w ∈ T |w |=
ψ}. Its effect is described by the normal mutual update with this semantic
content, i.e. by a : [ψ] −→ İ. The pragmatically basic cases build the subclass
B of [ψ] where the additional pragmatic constraints linked to perspectives and
intentions hold. We assume here (1) that the speaker is sincere and must know
that he is successful, and (2) that the hearer must be able to make sense of
the utterance, i.e. updating with the information which is connected to the fact
that ψ was uttered does not lead to a contradiction. The implicit circularity of
these constraints makes the task of finding B a non–trivial one.

We extend B to non–ideal dialogue situations by applying a combination
of the perspectival operators. Let us assume now that we have applied the
extending operation α times and got ∆α(B). ∆α(B) should also represent the
information which is connected to the fact that ψ was uttered, and we can
identify the update potential with the normal mutual update a : ∆α(B) −→ İ
defined by ∆α(B). What we want is to define ∆α+1(B) as ∆α(B) ∪D(∆α(B))
where D denotes the operation which derives extended uses. Then we can
identify the new update effect of asserting ψ with the normal mutual update
defined by ∆α+1(B). In the end we want to collect all ∆α(B) in a class ∆(B).
This then proves that the pragmatic principles connected to perspectives and
the rationality constraints allow extended uses of the assertion of ψ exactly
iff the utterance situation belongs to ∆(B). But this does not work out so
smoothly. E.g. we have said that B should characterise the pragmatically basic
uses, i.e. a sentence ψ can be asserted in an ideal dialogue situation w ∈ T if,
and only if w ∈ B. But if we now apply our extending operators, this may add
new elements from T , and this first contradicts the claim that we can assert
ψ in T only if it is an element in B, and second the update of a situation
in B with the larger set ∆α+1(B) may now lead to a different result. This
leads to problems in connection with the rationality constraints, Example (7)
below. We solve these problems by restricting our applications to a class H(T )
of candidates with an internal hierarchical structure. There is a hard reason
for introducing H(T ) which is related to speaker’s intentions. If we allow for
possibilities with arbitrary circular structure, then we find situations where our
criterion for extended uses leads into an irresolvable circle:

(7) Let w be the situation from Example (1), i.e. w = 〈ψ, {w}, {w, v}〉 and
v = 〈¬ψ, {v}, {w, v}〉. Then we consider

t = 〈¬ψ, {t}, {t, u}〉 ,
u = 〈ψ, {w}, {t, u}〉 ,

We further assume that in t and w the speaker wants to convince the hearer
that ψ holds. Furthermore, we assume that in w it is common knowledge that
the speaker is sincere. Hence we assume w ∈ B. Now we get the following
problem: Neither t nor u are elements of T , hence, in the initial situation no
use of an assertion is defined. Then we try to extend B step by step. First
we see that u ∈ 2SB ∩ 3H2SB. It follows that a derived use is possible in
u. As t and u do not belong to B it follows that t is not contained in the first
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extension ∆1(B). Hence the related update with ∆1(B) should eliminate t from
H’s information state in u. But this means that the update results in a state
where H is convinced that ψ holds. Now we apply our operators once more,
and we see that t ∈ 2S3H∆1(B)∩3H∆1(B). As S can also see that an update
with ∆1(B) leads to a desired situation, it follows that t ∈ ∆2(B). But now
the mutual update with ∆2(B) does not remove t from H’s information state,
hence, she will no more be convinced that ψ holds. This means that we should
remove t again if we define ∆3(B) because a rationality condition is violated.
But then the update with ∆3(B) eliminates t in u(H) and we are in the same
situation we have been in after the first derivation.

We are going to characterise the intended applications by a class H(T ). The
elements of H(T ) will have an internal hierarchical structure which allows us to
measure their complexity by ordinal numbers. We then construct ∆α+1(B) in
such a way that our operators add only elements with complexity α+1. Then our
claim will be that a sentence ψ can be asserted in a situation w ∈ Hα+1(T ), i.e.
in situations in H(T ) with complexity at most α+1, if and only if w ∈ ∆α+1(B).
H(T ) \ T is the class of candidates for a derived extended use in the same way
as T was for the basic uses.

For the direct derivation, our intuition has been that the participant believes
to be in a situation where some sentence can be asserted successfully. For the
indirect case, he has to be convinced that the other one is or might be in
such a situation. In both cases, we think that the possibilities in the exploited
information states have to be more simple than the newly derived possibilities.
In the ideal case of Example (1) we see that the hearer not only believes that
they may be in a basic situation w ∈ B for ψ but also that she is convinced to
be in an ideal situation, i.e. the actual situation belongs to 3HB ∩ 2HT . In
Example (4) the speaker believes that he can mislead the hearer. But this is only
the case because he is convinced that the hearer is convinced to be in an ideal
situation, i.e. the actual situation belongs to 2S3HB∩2S2HT . In Example (3)
the hearer interprets the assertion as a mistake because she is convinced that
he acts according to the conditions of ideal dialogue, i.e. the actual situation
is in 3H2SB ∩ 2H2ST . In case of Example (7) we see that u ∈ 3HB but
u 6∈ 2HT . These observations lead us to the following generalisation: If we
have established that a sentence ψ can be asserted in situation w ∈ G if, and
only if w ∈ M , then we find the candidates for an extended use by looking at
the table in Figure 3: This means, if an extended use is possible in a situation v,

direct candidate indirect candidate
speaker 2SM 2SG 2S(M ∪3HM) 2S(G ∪2HG)
hearer 3HM 2HG 3H2SM 2H(G ∪2SG)

Figure 3: The four derived uses and their candidate classes.

then v has to be e.g. an element of (2SM ∩2SG)∩ (3H2SM ∩2H2SG). The
operators in the second and fourth column provide us with the candidates where
speaker and hearer can search for extended uses. We can construct the class
H(T ) by an iterated application of these operators. We will prove in Lemma 4.3
and 5.2 that, in fact, the problems of Example (7) do not occur if we restrict
our applications to this class.
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We now look for a description which can be better used in the subsequent
proofs. For this reason, we provide for an axiomatic characterisation of H(T ).
In Section A, Lemma A.7, we will prove that the recursive construction and the
axiomatic characterisation define the same structureH(T ). The construction by
an iterated application of the above operators suggests that we can characterise
H(T ) in terms of paths. And, in fact, we can do this: H(T ) is the largest
transitive subclass of İ such that for all situations w ∈ H(T ) \ T :

1. There is at most one participant who believes the real situation to be
possible.

2. There are no long circular paths going from one participant to the other
and coming back to the original situation.

3. If there is a path starting at the real situation which goes from one par-
ticipant to the other, then this path should ultimately reach the ideal
situations in T .

I.e. we don’t allow for structures where we have (H1′) w ∈ w(S)∩w(H), or (H2′)
sequences v1 ∈ v0(X0)&v2 ∈ v1(X1), . . . , v0 ∈ vn(Xn) where v0 ∈ H(T )\T , for
all i it holds that Xi 6= Xi+1 and n > 0, or (H3′) sequences v1 ∈ v0(X0) & v2 ∈
v1(X1), . . . where for all i holds that Xi 6= Xi+1 and where no vi ∈ T . These
quite intuitive conditions may help to understand our final characterisation of
H(T ). We will see in Section 2 that the following axioms (H1)–(H3) capture the
content of (H1′)–(H3′). We provide for a more fine–grained structure because it
allows us do define extended uses by recursion over the complexity of situations.

Let T (w) be the smallest transitive superset of {w}. We call T (w) the
transitive hull of the possibility w. In case of Example (1) T (w) is {w, v}, for
Example (2) T (u) = {u,w, v}, and for Example (3) T (s) = {s, w, v}. We can
see that T (w) ⊆ T (u), T (s) but T (u), T (s) 6⊆ T (w). In general, we find e.g. for
w ∈ 2ST ∩ 2HT with w 6∈ T that for all v ∈ w(S) ∪ w(H): T (w) 6⊆ T (v). In
case of Example (7) we see that T (t) = T (u).

In a first step we restrict the intended applications to cases where the subset
relation between transitive hulls defines a well–founded partial order on dialogue
situations:

• [w] := {v ∈ İ | T (w) = T (v)},

• [v] ≤ [w] iff T (v) ⊆ T (w).

Let F be the class of all possibilities w ∈ İ where ≤ is a well founded partial
order on {[v] | v ∈ T (w)}. We can see that Example (7) is still an element of F .
For F we can define an order type for the possibilities. This order type provides
us with a measure for the complexity of situations.

• otp(w) = 0 iff {[v] | [v] < [w]} = ∅.

• otp(w) := sup{otp(v) + 1 | [v] < [w]}, else.

For M ⊆ F let Mα := {w ∈ M | otp(w) ≤ α}. This measure of complexity
is still quite rough. E.g. all possibilities in T have order type otp(w) = 0. We
note the following fact, which follows by definition of otp.

Fact 3.1 For w ∈ F we have: ∀v ∈ T (w) (otp(v) = otp(w) ⇔ w ∈ T (v)).
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Now, we can provide our final characterisation of H(T ): It is the largest
subclass of F such that for all w ∈ H(T ) \ T , and for all X ∈ DP:

(H1) w 6∈ w(S) ∩ w(H),

(H2) ∀v ∈ T (w) (w 6∈ v(X) ⇒ ∀u ∈ v(X) otp(v) < otp(w)),

(H3) w(X) ⊆ H(T ).

The second axiom says that for all v in the transitive hull of w, if w is not an
element of v(X), then all possibilities in v(X) have a complexity lower than the
complexity of w. Following from Fact 3.1 (H2) is equivalent to:

(H2) ∀v ∈ T (w) (w 6∈ v(X) ⇒ ∀u ∈ v(X)w 6∈ T (u)).

4 Perspectives and Assertions

In this section we show how to derive the basic cases and the extended cases
for asserting a sentence ψ using our perspectival operators. We concentrate on
the epistemic perspectives of the dialogue participants and the role they play
for assertions. The additional problems posed by constraints linked to speaker’s
goals are the topic of Section 5. We hope that the essentials of our theory become
clearer if we separate the discussion of perspectives and speaker’s intentions.

4.1 The Base Case Problem

We look again at the assertion (ψ) It is snowing in the mountains in (1).
In order to make his utterance, S should be convinced that it is really snow-

ing in the mountains. If it in fact does but S has no evidence for ψ, then his
assertion in (1) is not justified.

Suppose now it is snowing in the mountains, S is convinced of it, and H
happens to know the truth of it too. But assume also that H is convinced
that S can’t know whether ψ. In this case the fact that the speaker asserts ψ
contradicts his previous beliefs, and either he revises them or he has to assume
that S is insincere or mistaken.

We make the assumption that agents are justified to perform an action iff
they are convinced that it must be successful, and we make the assumption that
hearers can make sense of an assertion if the fact that the act is performed by
the speaker does not contradict the hearer’s beliefs about the dialogue situation.

Assume that we have a condition γ which specifies the conditions of success
for a certain dialogue act a. This means that the act can be performed success-
fully in all situations s where s |= γ. If a speaker S wants to perform a he has
to be sure that γ really holds. Therefore, in a situation s where S performs a
we must have s |= 2Sγ. But this then becomes part of the information carried
by the fact that a was performed. Hence, if the hearer recognises that a was
performed by S, it should be the case that s |= 3H(γ ∧ 2Sγ). Otherwise the
fact of S performing a will contradict H’s beliefs.

But then, S has to be sure that this is the case. So we need in addition
s |= 2S3H(γ ∧ 2Sγ). We can go on with this way of reasoning and get an
infinite number of new conditions for s. We can describe this observation by:
Let Σ be the smallest set of formulas which contains γ and which is closed under:
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p, q ∈ Σ then p ∧ q,2Sp,3Hp ∈ Σ. Then, we call the performance of dialogue
act a in a situation s mutually justified iff s |= Σ. We claim that the situations
in T where a dialogue act is mutually justified are the pragmatically basic cases
for this act. The following proposition gives us a simple criterion for deciding
which situations in T support Σ.

Proposition 4.1 With Σ defined as above and s ∈ T we get:

s |= Σ ⇐⇒ s |= γ ∧2Sγ

Proof: Let Σ be the smallest set containing γ and closed under p, q ∈ Σ ⇒
p ∧ q,2Sp,3Hp ∈ Σ. Let M := {s ∈ T | s |= γ ∧ 2Sγ}. It is clear that s |= Σ
implies s ∈M . Hence, assume s ∈M . Then s |= γ and if s |= p and s |= q then,
of course, s |= p ∧ q. Furthermore, s ∈ T implies s |= p ⇒ s |= 3Hp. Hence,
it remains to show that s |= p implies s |= 2Sp for p ∈ Σ. If p ≡ γ, it follows
by s ∈M . Of course, we have s |= 2Sp& s |= 2Sq then s |= 2S(p ∧ q). Hence,
assume p ≡ 2Sq or p ≡ 3Hq. The first case is clear due to introspection, and
for the second part we have s |= 2Sq ⇒ s |= 2S3Hq because s ∈ T . Therefore,
we have s |= 2Sp for all p ∈ Σ. This finally proves that s |= Σ.

Let M ⊆ T be a class which represents some property of possibilities. Then,
we can formulate our result as follows: Let M0 := M , M2n+1 := M2n∩2SM

2n,
M2n+2 := M2n+1 ∩3HM

2n+1, and

∇M :=
⋂

n∈N

Mn,

then

Lemma 4.2 If M ⊆ T , then ∇M = M ∩2SM .

If a is the act where the speaker asserts a sentence ψ, then ∇[ψ] is the class
of possibilities where the assertion is mutually justified. It is the class of basic
cases.

4.2 The Derived Extended Uses

We now show how to derive extended uses. We proceed by recursion over
the order type of possibilities. For this end, we define restricted versions of the
operators. They produce only possibilities of a certain maximal complexity. Our
aim is to construct in every step α exactly all possible extensions of complexity
α. That we reached our aim will be proved in Lemma 4.3. For Example (7)
it is essential that we can derive in later steps new extensions with the same
complexity. In Lemma 4.3 we show that this can not happen. Let Q denote one
of the operators 2 or 3 and H∗(T ) := H(T ) \ T .

Q≤α
X M := QXM ∩Hα

∗ (T )
Q<α

X M := QXM ∩ {w ∈ Hα
∗ (T ) | ∀v ∈ w(X) otp(v) < α}

The elements of Q≤α
X M all have maximal complexity α and an internal hierar-

chical structure. No element of T is an element of Q≤α
X M . Q<α

X M adds the
restriction that all epistemic alternatives of participant X have a complexity
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lower than α. Hence, if w ∈ Q<α
X M and otp(w) = α, then Fact 3.1 implies that

w 6∈ w(X).
With these operators we can define the operations which give us all ex-

tensions of a certain complexity. The following four operations correspond to
the four possible intersections of classes, which we can derive using the four
operators of Figure 2. For α > 0 we define

δα
1M := 2<α

S M ∩3<α
H M

δα
2M := 2<α

S M ∩3
≤α
H 2<α

S M

δα
3M := 2

≤α
S 3<α

H M ∩3<α
H M

δα
4M := 2

≤α
S 3<α

H M ∩3
≤α
H 2<α

S M

For example, w ∈ δα
1M means that the speaker is convinced that the order type

of w is smaller than α and that it belongs to M , and that the hearer is also
convinced that the order type of w is lower than α and that it might belong to
M .

We define ∆0(M) := M , and ∆<α(M) :=
⋃

β<α ∆β(M). For α > 0 we set

∆α(M) := ∆<α(M) ∪
4⋃

i=1

δα
i ∆<α(M).

We set ∆(M) :=
⋃

α ∆α(M). By definition of δα
i and ∆<α(M) it follows that

∆α(M) ⊆ Hα(T ). The following lemma shows that we get for all α exactly all
derived possible extensions of M of complexity α.

Lemma 4.3 Let M ⊆ T . For all ordinals α:

∀w ∈ ∆α(M)∀β < α (w ∈ ∆β(M) ⇔ otp(w) ≤ β) .

Proof: Let w ∈ ∆α(M) and β < α. The direction from left to right is trivial.
Assume that otp(w) = 0. By definition of the operators 2≤, 3≤ etc. it follows
that ∆(M) ⊆M ∪H∗(T ) = M ∪ (H(T )\T ). w ∈ H(T ) and otp(w) = 0 implies
w ∈ T by Lemma A.1. Hence, w ∈ ∆(M) & otp(w) = 0 implies w ∈ M =
∆0(M). The next fact follows from (H2) and from w ∈ H∗(T ) ⇒ otp(w) > 0:

Fact 4.4 w ∈ H∗(T ) implies (1) ∀v ∈ T (w)w 6∈ v(S) ∩ v(H) and (2) ∀v ∈
T (w)¬∃u, u′ (u ∈ v(S) & u′ ∈ v(H) & w ∈ T (u) ∩ T (u′)).

So assume otp(w) ≤ β, α = β+1. Assume further that we have proved that
w ∈ ∆β′(M) for otp(w) = β′ < β. Hence, let otp(w) = β. We consider only the
case w ∈ δα

4 ∆<α(M). Therefore, w ∈ 2
≤β
S 3

≤β
H ∆β(M) ∩3

≤β
H 2

≤β
S ∆β(M).

Let v ∈ w(S), otp(v) = β. Then v ∈ 3
≤β
H ∆β(M). Let u ∈ v(H). Suppose

otp(u) = β. Then w ∈ T (u) by Fact 3.1, and therefore w ∈ v(H) by (H2). By
(H2) it follows also that w ∈ w(S), and by introspection w ∈ v(S). But then w ∈
v(S) ∩ v(H), in contradiction with Fact 4.4. Hence, for all u ∈ v(H) otp(u) <
β. Therefore, v ∈ 3

<β
H ∆<β(M). As v was arbitrary, it follows that w ∈

2
≤β
S 3

<β
H ∆<β(M). If for all v ∈ w(S) otp(v) < β, then w ∈ 2

<β
S 3

<β
H ∆<β(M) ⊆

2
≤β
S 3

<β
H ∆<β(M).

Let v ∈ w(H) ∩ 2
≤β
S ∆β(M). Assume that otp(v) = β. Let u ∈ v(S).

Suppose otp(u) = β. Then w ∈ T (u), and therefore w ∈ v(S) by (H2). But
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v ∈ w(H) = v(H), therefore we also have w ∈ v(H), in contradiction with
Fact 4.4. Hence, for all u ∈ v(S) otp(u) < β. Hence, v ∈ w(H) ∩ 2

<β
S ∆<β(M),

and therefore w ∈ 3
≤β
H 2

<β
S ∆<β(M). If for all v ∈ w(H) otp(v) < β, then

w ∈ 3
<β
H 2

<β
S ∆<β(M) ⊆ 3

≤β
H 2

<β
S ∆<β(M).

Hence, w ∈ 2
≤β
S 3

<β
H ∆<β(M) ∩3

≤β
H 2

<β
S ∆<β(M). Therefore w ∈ ∆β(M).

Next, assume that α is a limit ordinal. Again, we consider only the case
w ∈ δα

4 ∆<α(M). Let otp(w) = β < α. We suppose that we have proven
that v ∈ ∆β′(M) for otp(v) = β′ < α and v ∈ ∆<α(M). This allows us
to conclude that w ∈ 2

≤β+1
S 3

<β+1
H ∆<β+1(M) ∩ 3

≤β+1
H 2

<β+1
S ∆<β+1(M) =

δβ+1
4 ∆<β+1(M) ⊆ ∆β+1(M). By I.H. it follows that w ∈ ∆β(M).

Remark 4.5 Lemma 4.3 remains valid if we replace 2S in the definition of
∆(M) by an operator Q which has the form QM = 2S(M ∩C) for some class
C ⊆ H(T ).

We can go through the proof of Lemma 4.3 and see that all inferences remain
valid.

5 Speaker’s Goals, Perspectives and Assertions

We introduce now explicit representations for the goals of the speaker. We
model goals of a participant as a function mapping his epistemic possibilities
into subsets of all possibilities, i.e. this function tells us for each of his epistemic
possibilities which situations are desirable for him. We have seen in Section 3.2
why we have to introduce speaker’s goals. Example (7) shows that these goals
together with some rationality constraints may lead to difficult problems. In
case of extended uses we can avoid these problems by constructing the exten-
sions relative H(T ). In this class all possibilities have an internal hierarchical
structure except for those possibilities which belong to T . We will see that we
can use essentially the same construction of extended uses for possibilities with
speaker’s goals. But the circular structures of T will lead to serious problems
for the characterisation of basic cases.

Let M denote a class of models for the possible outer situations.

• A possibility is a triple w = 〈sw, 〈w(S), Gw
S 〉 , 〈w(H)〉〉 such that

– sw ∈M,
– w(S) and w(H) are information states,
– Gw

S is a function with: (1) domGw
S = w(S), and (2) ∀v ∈ w(S)Gw

S (v)
is an information state.

• An information state is a set of possibilities.

We denote the class of all possibilities with representations for the goals by WG.
Transitivity of a class is defined in the same way as in Section 2: M ⊆ WG is
transitive iff ∀w ∈M ∀X ∈ DPw(X) ⊆M . I.e. if w ∈M , and if M is transitive,
then the information states Gw

S (v) don’t need to be subsets of M .
For introspectivity we have to add a condition which guarantees that the real

goals of the speaker and those of all his epistemic alternatives are the same. Let
IG denote the largest transitive subclass of WG such that for all X ∈ DP for
all w ∈ IG
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• ∀v ∈ w(X)w(X) = v(X),

• ∀v ∈ w(S)Gw
S = Gv

S .

We denote by İG the largest transitive subclass of IG such that ∀w ∈
İG ∀X ∈ DPw(X) 6= ∅. We take TG to be the largest transitive subclass
of İG such that for all w ∈ TG

• w ∈ w(S) ∩ w(H)

• ∀v ∈ w(S)Gw
S (v) ⊆ TG.

The second condition is a kind of sincerity condition, i.e the speaker does not
want to mislead the hearer.8

We modify our definition of normal mutual update for possibilities with
speaker’s goals: Let a be a function with domain D(a) then a is a normal
mutual update if (NMU) holds, and if

∀w ∈ D(a) ∀v ∈ w(S) ∩D(a) Ga(w)
S (a(v)) = Gw

S (v).

I.e. we assume that an update with the information represented by D(a) does
not change speaker’s goals.

The definitions of T (w), otp and H(M) remain the same as in the previous
sections except that W is replaced by WG. FG denotes the subclass of İG

where otp is defined.
In Section 3.2 we have introduced rationality constraints linked to speaker’s

goals. For an action a and a goal G(w) the constraints looked as follows:

(R1) w 6∈ G(w) (R2) a(w) ∈ G(w)

I.e. we should only perform an action if our goal is not yet achieved, and we
should only choose actions which allow us to reach our goal.

We modify the 2 operator in such a way that we check the rationality con-
straints at the time when we apply the operator. Let M ⊆ FG be an arbitrary
class:

[R]SM := {w ∈ İG | ∀v ∈ w(S) (v ∈M & v 6∈ Gv
S(v) & a(v) ∈ Gv

S(v))}

= 2S

(
M ∩ {v ∈ İG | v 6∈ Gv

S(v) & a(v) ∈ Gv
S(v)}

)
Remember that Gw

S = Gv
S for all v ∈ w(S). Therefore, we could also have

written Gw
S instead of Gv

S in the definition of the operator. [R]SM is the class
of all possibilities where S is convinced that the real situation belongs to M ,
a can be performed successfully in order to reach his goal, and where this goal
is not already reached. The axioms (R1) and (R2) hold by definition of the
operator for all epistemic alternatives of S. It follows that 3H [R]SM denotes
the class of all possibilities where H thinks it is possible that S can choose a in
order to reach his goal.

8We will see in Example (11) why we need such a condition.
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5.1 The Base Case Problem

In Section 4.1 we argued that the speaker should be convinced that his assertion
is successful, and the hearer should know that this can be the case. Then the
speaker should be convinced that both conditions hold, and the hearer should
again know that this is possible. We have argued that, in principle, we must
impose these conditions again and again. If M denotes the class where some
sentence ψ is true, then we denote the class where its assertion is mutually
justified as ∇M . For possibilities without speaker’s goals we could provide a
simple characterisation of ∇M . In this section we will see that this is not
possible if we add goals.

We see that the condition for the hearer does not impose a real restriction
because M ⊆ TG implies M ∩ 3HM = M . Hence, M ∩ [R]SM ∩ 3HM =
M ∩ [R]SM . Let aM denote the normal mutual update determined by M . With
w ∈ TG ⇒ w ∈ w(S) and introspection we find:

M ∩ [R]S(M ∩ [R]SM) =
= M ∩ [R]S{w ∈M | w(S) ⊆M & ∀v ∈ w(S)(v 6∈ Gw

S (v) & aM (v) ∈ Gw
S (v))}

= {w ∈M | w(S) ⊆M & ∀v ∈ w(S)(v 6∈ Gw
S (v) & aM (v) ∈ Gw

S (v))}
= M ∩ [R]SM.

If we adopt the definition from Section 4.1 and define∇M byM1 := M∩[R]SM ,
Mn+1 := Mn ∩ [R]SMn ∩ 3HM

n, ∇M :=
⋂

n∈NMn, then the considerations
above seem to show that we can again characterise ∇M as M ∩ [R]SM . But
the following example shows that this is not correct:

(8) Helga calls up her son Stephan early on Sunday morning and asks him
whether he wants to visit her. They both know that Stephan would have
checked the weather at this time only if he needed an excuse for not
accepting the expected invitation. It happens that he knows that it is
snowing, and he does not want to let her know that he would prefer to
stay at home this day. Should he tell his mother that he can’t come
because it is snowing in the mountains?

In Example (8) it is true that (ψ) it is snowing in the mountains, and we assume
that, if Helga learns this fact, she will excuse her son for not visiting her, and
that she can’t know whether Stephan likes to visit her or not. Hence, if M
denotes the set of all w ∈ TG where it is snowing in the mountains, then the
situation is an element of M ∩ [R]SM , and we would predict that Stephan will
be successful if he tells her that ψ. But of course this implies that Helga also
learns that Stephan knows that ψ, hence she can conclude that he does not like
to visit her, which is an undesired result for Stephan. This means that Stefan
should check in the second step whether the mutual update with M ∩ [R]SM
also leads to a desired situation. The problem is that the above definition of
∇M does only capture the fact that the hearer learns ψ but not that she also
learns that the speaker knows that ψ and that it is reasonable for him to assert
ψ, and that he knows that she knows this, etc.

In general, we have to find a fixed–point of the update operations. This is a
non–trivial task. First of all, we have to find the correct fixed–point condition.
In order to capture Example (8), we have to search for sets M which are fixed–
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points of the following operator. Let M ⊆ TG:

J M := {w ∈M | w(S) ⊆M & ∀v ∈ w(S)(v 6∈ Gw
S (v) & aM (v) ∈ Gw

S (v))}

Let M0 := M and Mn+1 := J Mn. Then, M1 is the set of worlds where the
rationality conditions for asserting M are satisfied. It follows especially that
v ∈M1 implies that mutually updating with M leads to a desired outcome. M1

may be a proper subset of M , hence, mutually learning that M1 may lead to
a different outcome than simply mutually learning that M . Hence, we have to
check in the next step whether mutually learning M1 is desired by the speaker.
In general, in step n+1 we check whether mutually learning Mn is desirable for
the speaker.

In this paper, we use a strong assumption about speaker’s goals which guar-
antees that a fixed–point can easily be constructed. The assumption states: if
the speaker can reach his goal by a mutual update with some information M ,
then he can also reach it by updating with any stronger information N ⊆ M .
Hence, in the following, we consider only sets M ⊆ TG such that for all w ∈M
and v ∈ w(S):

(R3) ∀N ⊆M : aM (v) ∈ Gw
S (v) & v(S) ⊆ N ⇒ aN (v) ∈ Gw

S (v)

With the foregoing, we can easily show the following lemma.

Lemma 5.1 Let M ⊆ TG be such that (R3) holds for all v ∈ M . Then,
∇M := M ∩ [R]SM is a fixed–point the J operator.

5.2 The Derived Extended Uses

In this section we show how to derive extended uses of assertion if we add ratio-
nality constraints linked to speaker’s goals to our considerations. In principle
we proceed in the same way as in Section 4.2 by recursively defining extensions
∆α(B) of some base set B. If we know ∆α(B) and want to decide whether
some w belongs to ∆α+1(B) then we have to check wether the update with the
information carried by the assertion leads to a desirable state. But this means
that we have to know ∆α+1(B) in order to check the rationality principles. As
a consequence, we cannot directly define ∆α+1(B) by using the operators linked
to perspectives. Therefore we proceed as follows: Given some set M ⊆ TG we
provide an axiomatic characterisation of possible extensions ∆α(M) of M and
then show that there exists exactly one sequence (∆α(M))α∈On which satisfies
the following axioms (D1) and (D2). Let (∆α(M))α∈On be a sequence of sub-
classes of H(T ). The first axiom (D1) states that for each α the elements of
∆α(M) with order type β ≤ α are already elements of ∆β(M).

(D1) ∀β ≤ α ∆α(M) ∩Hβ(T ) = ∆β(M).

Note that (D1) implies ∆0(M) = M and ∆α(M) ⊆ Hα(T ).
Let aα be the normal mutual update determined by ∆α(M), and a∆ the

normal mutual update determined by ∆(M) :=
⋃

α ∆α(M). (D1) implies aα =
a∆|Hα(T ), and especially it follows w ∈ ∆α(M) ⇒ aα(w) = a∆(w). We define
the operator [R] which combines the 2 operator and the checking of rationality
axioms (R1), (R2) relative to a∆:

[R]SN := {w ∈ İG | ∀v ∈ w(S) (v ∈ N & v 6∈ Gv
S(v) & a∆(v) ∈ Gv

S(v))}.
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The next axiom demands that the new elements of ∆α(M) are those which can
be derived by application of the restricted versions of perspectival operators
motivated in Section 3.

(D2) Let w ∈ Hα(T ) and ∆<α(M) :=
⋃

β<α ∆α(M). Then w ∈ ∆α(M), iff
w ∈ ∆<α(M) or there exists N ⊆ ∆<α(M) such that w is an element of
one of the following sets:

δα
1N := [R]<α

S N ∩3<α
H N ; δα

2N := [R]<α
S N ∩3

≤α
H [R]<α

S N

δα
3N := [R]≤α

S 3<α
H N ∩3<α

H N ; δα
4N := [R]≤α

S 3<α
H N ∩3

≤α
H [R]<α

S N

We call (∆α)α∈On a possible derived extension of M if the axioms (D1) and
(D2) hold.

The condition of (D2) does not allow for a direct definition of ∆α(M) because
the definition of the [R] operator presupposes that ∆α(M) is already defined.
We show that for every M ⊆ TG there exists a unique possible derived extension
∆(M), see Theorem 5.3. We define an extension ∆(M) and a∆ simultaneously
by recursion over α.

Assume that ∆β(M) and aβ are defined for β < α and that the restricted
versions of (D1) and (D2) hold for (∆β(M))β<α. We show that this already
implies that [R]<α

S N and [R]≤α
S 3<α

H N are uniquely defined for N ⊆ ∆<α(M).
First we see that by definition [R]<α

S N must be equal to:

{w ∈ Hα(T ) | w(S) ⊆ N & ∀v ∈ w(S)(a∆(v) ∈ Gv(v) & v 6∈ Gv(v))}

If we write a<α for the normal mutual update determined by ∆<α(M), then
(D1) implies that this is equal to:

{w ∈ Hα(T ) | w(S) ⊆ N & ∀v ∈ w(S)(a<α(v) ∈ Gv(v) & v 6∈ Gv(v))}.

But a<α is given by I.H., hence, [R]<α
S N is uniquely defined.

Next we consider [R]≤α
S 3<α

H N . By definition it must be equal to:

{w ∈ Hα(T ) | w(S) ⊆ 3<α
H N & ∀v ∈ w(S)(a∆(v) ∈ Gv(v) & v 6∈ Gv(v))}

Hence, due to introspection, w ∈ [R]≤α
S 3<α

H N implies w(S) ⊆ [R]≤α
S 3<α

H N .
This implies that a∆(w(S)) = {a∆(v) | v ∈ w(S)}. Hence, it must hold that

(∗) a∆(w) = 〈sw, 〈{a∆(v) | v ∈ w(S)}, Ga∆(w)〉, 〈a∆(w(H))〉〉.

We can assume that w ∈ w(S), hence w(H) ⊆ 3<α
H N . As a∆|w(H) is defined by

I.H. it follows that a∆(w) is uniquely defined by this equation9. Hence, we can
define [R]≤α

S 3<α
H N . This shows that ∆α(M) exists and is uniquely determined

by (D2) and I.H. We have to check that (D1) and (D2) hold also for the sequence
(∆α(M))β≤α. First, we show (D1), i.e. we show that we get in step α exactly
all new situations of complexity α:

9The last equation defines a system of equations, where the a∆(v) for v ∈ T (w) with
otp(v) ≥ α denote new urelements which function as unknown parameters. (AFA) set theory
guarantees that it has a unique solution for all w. Then, the set of new possibilities in

[R]≤α
S 3<α

H N is equal to the set of all w ∈ Hα(T ) such that (1) w(H) ⊆ 3<α
H N and such that

(2) the solution a∆ of (∗) satisfies ∀v ∈ w(S)(a∆(v) ∈ Gv(v) & v 6∈ Gv
S(v)).
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Lemma 5.2 ∀γ ≤ β ≤ α ∆α(M)γ = ∆β(M)γ

But this follows from Remark 4.5 because of:

[R]SN = 2S

(
N ∩ {v ∈ İG | v 6∈ Gv

S(v) & a∆(v) ∈ Gv
S(v)}

)
This shows that (D1) holds. But this means that aα|H<α(T ) = a<α. Therefore,
it follows that aα is also a solution for (∗). This implies that (D2) holds. Hence,
this construction defines recursively a unique extension a∆ simultaneously with
∆(M). We summarise the result as:

Theorem 5.3 Let M ⊆ TG. Then there exists a unique possible extension
∆(M).

6 Applications

We apply our theory to examples introduced in the previous sections. A possi-
bility w is a triple 〈sw, 〈w(S), Gw

S 〉 , 〈w(H)〉〉 where sw is a model for the outer
situation. As we are only interested in the truth or falsity of the sentence (ψ)
‘It is snowing in the mountains’, we use the respective formula to denote this
model. We denote by [ψ] the set of all possibilities in TG where ψ is true.
We write aM for the normal mutual update determined by some M . We can
summarise the results of the last sections as follows:

• In a basic case an assertion that ψ must be mutually justified. We denote
the class of all these basic situations by B = ∇[ψ].

• The maximal class where the speaker can reasonably assert that ψ, and
where the hearer can interpret this assertion, is given by ∆(B).

• The update effect is given by a∆(B), the normal mutual update determined
by ∆(B).

Theorem 5.3 guarantees that ∆(B) and a∆(B) are always defined.
The basic case is exemplified by Example (1). We can represent the utter-

ance situation w1 by the following equations10:

w1 = 〈ψ, 〈{w1}, Gw1
S 〉, 〈{w1, v1}〉〉

v1 = 〈¬ψ, 〈{v1}, Gv1
S 〉, 〈{w1, v1}〉〉,

i.e. it is the case that ψ, H does not know it but knows that S knows whether
ψ. The intended resulting state is described by the equation

s1 = 〈ψ, 〈{s1}, Gs1
S 〉, 〈{s1}〉〉,

where Gs1
S (s1) = Gw1

S (w1). Hence, we assume that {s1} = Gw1
S (w1), and {t1} =

Gv1
S (v1), where t1 = 〈¬ψ, 〈{t1}, Gt1

S 〉, 〈{t1}〉〉, i.e. if ψ holds, then S wants that
they mutually know that ψ, and if ¬ψ holds, then he wants that they mutually

10Of course, this interpretation is not fully justified by the way the example was stated.
There are a lot of dialogue situations where this can be part of the description. We don’t
want to explain how we arrive at such a strong reading, but only, given the reading, why the
utterance of ψ is reasonable for the speaker and can be interpreted by the hearer.
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know that ¬ψ holds. Clearly, w1, v1, s1 ∈ TG. We find that w1 6∈ Gw1
S (w1), and

s1 ∈ Gw1
S (w1). Hence, w1 ∈ [R]S{w1}, and therefore by Lemma 5.1: w1 ∈ ∇B.

For a proof of aB(w1) = s1 we would need some additional techniques from
(AFA) set theory. The general properties of normal mutual updates imply

aB(w1) = 〈ψ, 〈{aB(w1)}, GaB(w1)
S 〉, 〈{aB(w1)}〉〉.

But this equation is structurally identical with the equation for s1. Using the
Solution Lemma, Theorem 2.1, it is provable that the two equations have the
same solution.

Hence, the theory predicts that it is reasonable for S to say that ψ, and that
it will be successful.

In Example (2) the beliefs and goals are the same as in (1):

w2 = 〈¬ψ, 〈{w1}, Gw1
S 〉, 〈{w1, v1}〉〉.

Hence, it is an element of 2<1
S B∩3<1

H B = δ11B ⊆ ∆1(B). Hence it is reasonable
for S to say that ψ, and the hearer will interpret his utterance in the same way
as in situation (1). Next, we consider Example (3).

w3 = 〈¬ψ, 〈{w1}, Gw1
S 〉, 〈{w3}〉〉.

Here the information of the speaker is the same as in the basic situation w1,
and as in w2. But this time, the hearer knows that it is not snowing in the
mountains (¬ψ), and she is aware of the entire dialogue situation. w3 is an
element of 2<1

S {w1} ∩2
≤1
H 2<1

S {w1} ⊆ δ12B ⊆ ∆1(B). The update of w2 and w3

with a∆1(B) leads to s2 and s3, where

s2 = 〈¬ψ, 〈{s1}, Gs1
S 〉, 〈{s1}〉〉,

s3 = 〈¬ψ, 〈{s1}, Gs1
S 〉, 〈{s3}〉〉.

In the next example, Example (9), S is no longer sincere. He is lying success-
fully. It is a case where the belief state of the hearer is the same as in the basic
situation, and where the speaker knows this but knows also that ψ is not true.
The speaker can exploit this situation and deceive the hearer.

(9) Helga calls up her son Stephan and asks him whether he wants to visit her
in Munich. Stephan, who has absolutely no inclination to drive to Munich
this day, answers: “It is snowing in the mountains.”

Now, the hearer updates as in the basic case, and the speaker updates only his
representation of the hearer’s beliefs.

w4 = 〈¬ψ, 〈{w4}, Gw4
S 〉, 〈{w1, v1}〉〉,

with Gw4
S (w4) = {s4}, where

s4 = 〈¬ψ, 〈{s4}, Gs4
S 〉, 〈{s1}〉〉,

and Gs4
S (s4) = {s4}. w4 is an element of 2

≤1
S 3<1

H {w1} ∩ 3<1
H {w1} ⊆ δ13B ⊆

∆1(B). We can see that a∆1(B)(w4) = s4. Hence, the speaker should be able to
successfully mislead the hearer.
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Example (4) receives the following representation:

w5 = 〈¬ψ, 〈{w4}, Gw4
S 〉, 〈{w5}〉〉.

I.e. the speaker remains in the same situation as in Example (9) but now the
hearer knows that the speaker wants to mislead him. w5 is an element of
2
≤1
S 3<1

H {w1}∩3
≤2
H 2<2

S {w4} ⊆ δ24{w4} ⊆ ∆2(B). We can see that a∆2(B)(w5) =
s5 with s5 = 〈¬ψ, 〈{s4}, Gs4

S 〉, 〈{s5}〉〉. Hence, the speaker thinks that he has
successfully misled the hearer, and the hearer knows this.

The next example is a case where the hearer suspects that the speaker might
lie.

(10) Helga calls up her son Stephan. She knows that he does not like to visit
her, hence she suspects that he will not be honest. But she knows also
that Stephan can’t know this. She asks him whether he wants to visit her,
and Stephan replies that it is snowing in the mountains. And, indeed, it
was not a lie.

w7 = 〈ψ, 〈{w1}, Gw1
S 〉, 〈{w7, u7, v7}〉〉

u7 = 〈¬ψ, 〈{v1}, Gv1
S 〉, 〈{w7, u7, v7}〉〉

v7 = 〈¬ψ, 〈{w4}, Gw4
S 〉, 〈{w7, u7, v7}〉〉.

This is an element of ∆2(B), and the update with a∆2(B) results in s7:

s7 = 〈ψ, 〈{s1}, Gs1
S 〉, 〈{s7, t7}〉〉

t7 = 〈¬ψ, 〈{s4}, Gs4
S 〉, 〈{s7, t7}〉〉.

I.e. Stephan believes that they now mutually believe that it is snowing in the
mountains. His mother knows this to be the case if it were really snowing, and
she believes that, if it were not snowing, he would think that he could deceive
her successfully.

The following example shows that we need a sincerity condition for our
basic situations. In (11) it is common knowledge that the hearer thinks that
the speaker might lie.

(11) Helga calls up her son Stephan. The last time she invited him, he pre-
tended that he could not come because of the bad weather. They both
know that she will be suspicious this time, if he replies to her question
that it is snowing in the mountains.

w8 = 〈ψ, 〈{w8}, Gw8
S 〉, 〈{w8, v8}〉〉

v8 = 〈¬ψ, 〈{v8}, Gv8
S 〉, 〈{w8, v8}〉〉,

where Gw8
S (w8) = {s1} and Gv8

S (v8) = {s4}. Clearly, otp(w8) = 0. But w8 is
not an element of TG because Gv8

S (v8) 6⊆ TG. Hence, w8 6∈ TG ⊇ ∇[ψ] = B.
Therefore, it can’t be an element of ∆(B). Without sincerity condition, i.e.
without the condition Gw

S (v) ⊆ TG for w ∈ TG and v ∈ w(S), w8 would be
an element of TG, and the general theory would predict that the hearer would
update his belief state with the information that ψ. Intuitively, Stephan has to
make clear that he is sincere to make his mother believe him. I.e. they mutually
have to redefine Gv8

S (v8) as t1, but this results in w1 and then, indeed, the
assertion of ψ will result in s1.
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7 Conclusion

We searched for a characterisation of dialogue situations where a felicitous use of
an assertion is possible. Felicity is taken here in the sense that (1) the speaker
is convinced that the update triggered by the assertion leads to a desirable
situation, and (2) the fact that the sentence was asserted does not contradict
the beliefs of the interpreter. We distinguished between the use of assertions
in ideal and non–ideal situations, where in ideal situations it holds that it is
common knowledge that (1) everybody believes the real situation to be possible
(has knowledge), and (2) the speaker does not want to mislead the hearer. We
started with the felicity conditions and update effects of assertions as they are
defined by pure semantics, i.e. we assume that a sentence with semantic content
ψ can be asserted exactly iff ψ is true in the actual situation. We described
the effect of an assertion by a normal mutual update with its semantic content.
AFA set theory was an indispensable tool for working out our theory.

The pragmatically basic cases build the subclass B where the pragmatic
constraints linked to perspectives and intentions hold. We saw that the implicit
circularity of these constraints makes the task of finding B a non–trivial one.

We have argued that perspectives play an essential role in explaining ex-
tended uses in non–ideal situations. The idea was to start with a character-
isation of basic situations, and then to derive new uses from ideal situations
by systematic application of operators which reflect the way how partiality of
information can give rise to uses in new situations.

The theory presented in this paper evolved out of our research concerning
the felicity conditions for the referential use of definite descriptions (Benz, 1999).
There we used the same ideas to explain the referential use in situations with
arbitrarily complex belief structures. The present paper contains a much im-
proved description of the underlying mathematical structures. In (Benz, 2000)
we outlined on an informal level how the two papers combine to form a single
theory of perspectives. Assertions are examples of speech acts, and speech acts
are examples of goal directed linguistic actions. If a linguistic act can be charac-
terised by its preconditions, the speaker’s goals and if its effects can be described
by mutual learning, then our approach should be applicable and explain how
this linguistic act can have extended uses in defective dialogue situations. If
successful, this theory greatly simplifies the analysis of linguistic acts. To find
a characterisation of linguistic acts in ideal situations is normally a less compli-
cated task. The theory of perspectival derivations then automatically predicts
their use and effect in defective situations.
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A The Structure of H(T )

In this section we prove the claims we have made aboutH(T ). We first show that
“(H1)–(H3)+H(T ) ⊆ F” defines the same class as “(H1′)–(H3′)+H(T ) ⊆ İ”.
In the second part we show that we can construct H(T ) by an iterated applica-
tion of a combination of perspectival operators. The proofs in the subsequent
sections do only make use of “(H1)–(H3)+H(T ) ⊆ F”11. The following lemma
shows that this implies that (1) the complexity of the possibilities w ∈ H(T )\T
is greater than at least one participant believes it to be, (2) all situations with
complexity 0 must be elements of T , and (3) (H3′) holds.

Lemma A.1 Let w ∈ H(T ). Then

1. If w 6∈ T , then ∃X ∈ DP such that ∀v ∈ w(X) otp(v) < otp(w).

11Hence, the reader may skip this rather technical section.
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2. otp(w) = 0 ∨ w ∈ w(S) ∩ w(H) ⇒ w ∈ T .

3. Let X 6= Y . If p is a function with p(0) = w, p(2n+ 1) ∈ p(2n)(X), and
p(2n+ 2) ∈ p(2n+ 1)(Y ), then there is an n ∈ N with p(n) ∈ T .

Proof: (1) By (H1) there exists X ∈ DP such that w 6∈ w(X). With (H2) it
follows for all v ∈ w(X) that w 6∈ T (v), which implies otp(w) ≥ otp(v) + 1.

(2) If w ∈ w(S) ∩ w(H), it immediately follows from (H1) that w ∈ T . If
w 6∈ T , it follows from 1. that otp(w) ≥ 1.

(3) It follows from 1. and (H2) that otp(p(n + 2)) < otp(p(n)). Suppose
that for all n ∈ N p(n) 6∈ T . Then there exists an n with otp(p(n)) = 0. But
then, p(n) ∈ T , which contradicts the assumption.

As (H1′) is the same as (H1) and (H3′) implies (H2′), it follows that (H1)–
(H3) + H(T ) ⊆ F imply (H1′)–(H3′). Clearly, (H3′) implies for w ∈ İ that
w ∈ F . We need the following fact:

Fact A.2 Let X,Y ∈ DP, X 6= Y and w, v ∈ F . If v ∈ w(X), then T (v) =
w(X) ∪

⋃
u∈v(X)

⋃
u′∈u(Y ) T (u′) =: T ′(v).

Clearly T ′(v) ⊆ T (v). As T ′(v) is transitive and {v} ⊆ T ′(v), it follows from
definition of T (v) that T (v) ⊆ T ′(v).

If (H2) does not hold for w ∈ F , then there is a v ∈ T (w) such that for some
X w 6∈ v(X) & ∃u ∈ v(X) w ∈ T (u). Fact A.2 implies that w ∈ u′(Y ) for some
u′ ∈ v(X), Y 6= X. But this means that we can construct a sequence (vn)n∈N

which violates (H2′).
We can now provide a construction of H(T ) which shows that we can derive

this class by systematic application of perspectival operators. We will even
show that we can apply them in such a way that we get in each step α of
the recursion exactly all elements of H(T ) with complexity α. We therefore
introduce restricted versions of our operators:

• 2
≤α
X M := 2XM ∩ Fα,

• 2<α
X M := {w ∈ Fα | w(X) ⊆M & ∀v ∈ w(X) otp(v) < α}.

This gives us more control over the complexity of derived candidates. We can
then construct our class of candidates as suggested in the last section. Let
α > 0:

dα
1M := 2<α

S M ∩2<α
H M

dα
2M := 2<α

S M ∩2
≤α
H 2<α

S M

dα
3M := 2

≤α
S 2<α

H M ∩2<α
H M

dα
4M := 2

≤α
S 2<α

H M ∩2
≤α
H 2<α

S M

We define H0(T ) := T , H<α(T ) :=
⋃

β<αHβ(T ). For α > 0 we set

Hα(T ) := H<α(T ) ∪
4⋃

i=1

dα
i H<α(T ).

Let H∞(T ) :=
⋃

αHα(T ). For this construction we used the combination
2
≤α
X 2<α

Y M instead of 2
≤α
X (M ∪ 2<α

Y M). This is justified by the following
lemma which implies that H<α(T ) ⊆ 2<α

Y H<α(T ).
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Lemma A.3 Hα(T ) is transitive for all α.

Before we prove the lemma, we note the following fact:

Fact A.4 Let X,Y ∈ DP, X 6= Y . Assume that w ∈ Hα(T ) \ T , v ∈ w(X),
and otp(w) = α. Then otp(v) = α⇒ w ∈ 2

≤α
X 2<α

Y H<α(T ).

Proof: If w 6∈ 2
≤α
X 2<α

Y H<α(T ), then w ∈ 2<α
X H<α(T ). But then otp(v)

would have to be smaller than α.
Proof of Lemma A.3: We have to show that for all α w ∈ Hα(T ) im-

plies w(S) ∪ w(H) ⊆ Hα(T ). By induction over α: For H0(T ) = T the
claim holds by definition. Assume that w ∈ Hα(T ) \ H<α(T ). Then, sup-
pose w(S) 6⊆ Hα(T ). Let v ∈ w(S) \ Hα(T ). By introspection v(S) = w(S).
As w(S) \ Hα(T ) 6= ∅, it follows that w ∈ 2

≤α
S 2<α

H H<α(T ). Therefore v ∈
2
≤α
S 2<α

H H<α(T ) ∩ 2<α
H H<α(T ) = dα

3H<α(T ). Therefore, v ∈ Hα(T ), which
contradicts the assumption. The case for w(H) is symmetric.
For the proofs of the following lemmas we need one more technical fact:

Fact A.5 Let X,Y ∈ DP, X 6= Y . Assume that w ∈ Hα(T ) \ T , v ∈ w(X),
and otp(w) = α. Then ∀u ∈ T (v) (otp(u) = α⇒ u ∈ w(X)).

Proof: Let otp(u) = α, then (1) implies w ∈ 2
≤α
X 2<α

Y H<α(T ). Therefore,
∀u ∈ v(X) = w(X) ∀u′ ∈ u(Y ) otp(u′) < α. Now it follows by Fact A.2 that
u ∈ w(X).

The next lemma shows that our construction provides in step α really all
possibilities with complexity α:

Lemma A.6 ∀w ∈ H∞(T ) otp(w) = α⇒ w ∈ Hα(T ).

Proof: Assume that we have shown by induction that w ∈ H<β(T )&otp(w) =
0 implies w ∈ T . Suppose w ∈ Hβ(T ) \ H<β(T ), otp(w) = 0. Hence,
w ∈ 2

<β
S H<β(T ) or w ∈ 2

≤β
S 2

<β
H H<β(T ). Therefore, either ∃v ∈ w(S) v ∈

H<β(T ), or ∃v′ ∈ w(S) ∃u ∈ v′(H)u ∈ H<β(T ). Due to the transitivity of
H<β(T ) it follows that T (v), T (u) ⊆ H<β(T ), and otp(w) = 0 implies that
w ∈ T (w) = T (v) = T (u) ⊆ H<β(T ). Hence, it follows by I.H. that w ∈ T .

Assume that α > 0, and that the proposition holds for all β < α. Let w ∈
H∞(T ), otp(w) = α. Then, for some γ ≥ α w ∈ Hγ(T ). Let γ = α+1. We first
consider the case where w ∈ 2

≤α+1
S 2<α+1

H H<α+1(T ), i.e. w ∈ 2
≤α
S 2

≤α
H Hα(T ).

Suppose that ∃v ∈ w(S)∃u ∈ v(H) otp(u) = α. Then w ∈ T (u) by Fact 3.1,
and by Fact A.4 it follows that u ∈ 2

≤α
H 2<α

S H<α(T ) because u ∈ Hα(T ),
u ∈ u(H) and otp(u) = α. It follows from Fact A.5 that w ∈ u(H). Hence, w ∈
2<α

S H<α(T ). But then it follows that otp(v) < α, and therefore otp(u) < α, in
contradiction to the assumption. Hence, ∀v ∈ w(S)∀u ∈ v(H) otp(u) < α. By
I.H. it follows that ∀v ∈ w(S) ∀u ∈ v(H)u ∈ H<α(T ). Together, this implies
w ∈ 2

≤α
S 2<α

H H<α(T ).
Now we consider the case w ∈ 2<α+1

S H<α+1(T ). Then w ∈ 2
≤α
S Hα(T ).

Let v ∈ w(S), otp(v) = α. Then v(S) = w(S) and v ∈ 2
≤α
S 2<α

H H<α(T ). Hence
w ∈ 2

≤α
S 2<α

H H<α(T ).
The case for H is symmetric. Therefore w ∈ Hα(T ). For γ > α + 1 the

proposition follows easily with the I.H.
Now we can prove the central claim, that the hierarchy of the Hα(T ) is

identical to H(T ).
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Lemma A.7 For all α: Hα(T ) = Hα(T ). Moreover, this claim remains valid
if we use only dα

1 to dα
3 in the above construction of Hα(T ).

Proof: We prove the lemma by induction over α. We write H<α(T ) for⋃
β<αHβ(T ).

For α = 0 the claim follows by definition and Lemma A.1. Assume that α >
0, and that w ∈ Hα(T ). If otp(w) < α, then w ∈ Hβ(T ) for some β < α, and it
follows by I.H. that w ∈ Hβ(T ). Assume otp(w) = α, hence, w 6∈ T . Lemma A.1
shows that w ∈ 2<α

S H<α(T ), or that w ∈ 2<α
H H<α(T ). If w 6∈ w(S) ∪ w(H),

then w is an element of the intersection of both classes, and therefore we find
by I.H. w ∈ 2<α

S H<α(T ) ∩2<α
H H<α(T ) = d1H<α(T ). Assume that w ∈ w(S).

By introspection it holds that for all v ∈ w(S): v ∈ v(S), hence, by Fact 3.1
and Lemma A.1 that for all v ∈ w(S) \ T : v ∈ 2<α

H H<α(T ). Hence, w must be
an element of 2

≤α
S 2<α

H H<α(T ), therefore w ∈ 2
≤α
S 2<α

H H<α(T )∩2<α
H H<α(T )

and with I.H. it follows that w ∈ dα
3H<α(T ) ⊆ Hα(T ). This proves that

Hα(T ) ⊆ Hα(T ), and, moreover, that dα
4 was not necessary for the definition

of Hα(T ).
Next assume that w ∈ Hα(T ). If otp(w) < α, the claim follows by I.H. and

Lemma A.6. Hence, assume that otp(w) = α, which implies w 6∈ T . We have
to show that (H1) to (H3) hold.

Suppose w ∈ w(S) ∩ w(H). From w ∈ w(S) and otp(w) = α it
follows by Fact A.4 that w must be an element of 2

≤α
S 2<α

H H<α(T ), and
therefore in dα

3H<α(T ). But then, ∀v ∈ w(H) otp(v) < α, which contradicts
w ∈ w(H).

Suppose next that there is a v ∈ T (w) such that there exists a u ∈ v(S) with
w ∈ T (u). It follows by Fact 3.1 that otp(v) = otp(u) = otp(w) = α. But then,
it follows by Fact A.5 that w ∈ v(S).

Finally, w ∈ H(T ) ⇒ w(S), w(H) ⊆ H(T ) follows by transitivity of H(T ),
Lemma A.3.

As H(T ) is the largest subclass of F where (H1) to (H3) hold, it follows
that Hα(T ) ⊆ Hα(T ).
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