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1 Introduction

How to answer a question? If the inquirer asks it in order to make a decision
about something, then a wide range of reactions can be appropriate. If asked
‘Who of the applicants is qualified for the job?’, reactions may range from ‘Only
Müller and Schmidt’, ‘At least Müller’, over ‘Müller has working experience in
this field’, ‘Schmidt needs extra training’, to ‘The younger ones show more en-
thusiasm’, or even ‘The job needs an expert in PCF Theory’. This paper divides
into two parts. The goal of the first part is to derive a measure of utility for
answers from a game theoretic model of communication. We apply this measure
to account for a number of judgements about the appropriateness of partial and
mention–some answers. Under the assumption that interlocutors are Bayesian
utility optimisers we see questioning and answering as a two-person game with
complete coordination of preferences. Our approach builds up on work by A.
Merin and R. v. Rooij on decision theoretically formulated measures of rele-
vance.1 In the second part we study the relation between their approaches and
our game theoretic model of answering. We are aiming for principled charac-
terisations, and are especially interested in clarifying when and why we have to
model this type of communication as a two–person game.

There are a number of judgements about the appropriateness of answers
that seem to be due to their utility in a specific pragmatic context. In our
examples, we write ‘I’ for the inquirer, and ‘E’ for the answering expert. We
use the following question (1a) as our main example:

(1) Somewhere in the streets of Amsterdam...

a) I: Where can I buy an Italian newspaper?

b) E: At the station and at the Palace but nowhere else. (SE)

c) E: At the station. (A) / At the Palace. (B)

The answers b) and c) are equally useful with respect to conveyed information
and the inquirer’s goals. The answer in b) is called strongly exhaustive; it tells us
for every location whether we can buy there an Italian newspaper or not. The
answers in c) are called mention–some answers. In general, a mention–some
answer like A is not inferior to an answer like A ∧ ¬B:

d) E: There are Italian newspapers at the station but none at the Palace.

1I.e. (Merin, 1999) and quite a number of papers by R. v. Rooij listed in the bibliography.
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If E knows only that ¬A, then ¬A is an optimal answer:

e) E: There are no Italian newspapers at the station.

We call this type of answers partial answers.
In Section 2 we work out our model. We provide explicit definitions of the

underlying structures because we need them for later comparison with work
by Merin and v. Rooij. We will pay attention to how it incorporates Gricean
Maxims. Specifically: (1) The model incorporates the Cooperation Principle
as our games are games of perfect coordination, i.e. the answering expert E is
always cooperative. (2) Throughout we will assume that the maxim of Quality
cannot be violated, i.e. E can only answer with a proposition that she thinks to
be true. (3) We ignore the Maxim of Manner, i.e. if two propositions turn out
to be equally useful, then we treat them as equally good answers even if one of
them needs a much more complex sentence to be expressed. The main difference
shows up with respect to the Maxims of Quantity and Relevance. We replace
them by the assumption that interlocutors are Bayesian utility maximisers.

The answers in (1b)–(1e) form only the core of phenomena that have to
be explained. We study a number of examples in Section 3. An especially
interesting group results from situations where the answering expert has to take
into account the possibility of misleading expectations. An answer like ‘Müller
worked as a student in a software company’ may produce incorrect expectations
if he did only subordinate jobs in the reception. In general, this type of examples
is roughly characterised by (1) the existence of an answer C that favours but
doesn’t decide a certain hypothesis, (2) another answer C ′ which disfavours the
same hypothesis, and the fact that E knows C and C ′, or, at least, believes C ′

to be very probable. We call answers like C non–trivial partial answers. We
will show that they provide a principal problem for approaches that determine
optimal answers according to a decision theoretically formulated measure of
relevance. We prove that no such theory can be empirically adequate.

We present decision theoretic explications of the maxim of relevance in Sec-
tion 4. The results about their relation to our game theoretic definition of best
answers are presented in Section 5. From Theorem 5.3 it will follow that no deci-
sion theoretically formulated criterion for selecting maximally relevant answers
can avoid selecting misleading answers.

2 Optimal Answers

Background

There has been a controversial debate about whether or not strongly exhaus-
tive answers have a prominent status among the set of all possible answers.
Groenendijk & Stokhof (1984) are most prominent defenders of the view that
they constitute the basic answer, whereas other types of answers have to be
accounted for pragmatically. For a constituent question like ‘Who came to the
party?’ it has to tell us for each person whether he or she came to the party
or not. This is of some importance for the interpretation of embedded inter-
rogatives: If Peter knows who came to the party, then Peter knows whether
John came to the party, or whether Jeff came to the party, or whether Jane
came to the party, etc. The set of all possible answers is then the set of all
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strongly exhaustive answers.2 On the other side there are examples like ‘Peter
knows where to buy an Italian newspaper’ which does not seem to imply that
Peter knows whether he can buy an Italian newspaper at X, where X ranges
over all kiosks in Amsterdam. The same difference shows up for the respective
unembedded, or direct, questions. This leads to a position that sees questions
as ambiguous or underspecified.3

It is not our aim to solve this controversy here. We just indicate how we
like to position our approach in its context. Hence we state our background
assumptions and our main motives for adopting them. But, in a technical sense,
our game theoretic analysis of questioning and answering does not depend on
these assumptions.4

Following Groenendijk & Stokhof (1984) we identify the set of answers to
a question ?x.φ(x) with the set of all strongly exhaustive answers. If we take
this approach, then we have to find a pragmatic explanation for the possibility
of mention–some answers. Our main motivation for adopting their view comes
from the observation that only questions that are subordinated to special goals
of the inquirer allow for mention–some answers. If a question is asked only for
gathering information, i.e. in a pragmatically neutral context, then a strongly
exhaustive answer is expected:

(2) a) Which animals have a good sense of hearing?

b) Where do coral reefs grow?

c) When do bacteria form endospores?

In situations where asking a question is subordinated to further ends we find
a wide range of other reactions:

(3) Somewhere in the streets of Berlin ...

I: I want to take the next train to Potsdam. Where can I buy a ticket?

a) E: Lists all places where to buy and where not to buy a ticket.

b) E: At the main station / At this shop over there.

c) E: Come with me! (Takes him to the next ticket-shop)

d) E: (Hands him a ticket)

e) E: There are no controllers on the trains today.

The response in (3a) is the strongly exhaustive answer, those in (3b) are
mention–some answers. The response in (3c) contributes to a goal (Get to
a ticket–shop (G2)) immediately super–ordinated to the goal of getting to know
a shop that sells tickets (G1). The response in (3d) contributes to a goal (Get-
ting a ticket (G3)) which is again super–ordinated to the plan of buying a ticket.

2If Ω is a set of possible worlds with the same domain D, and [[φ]]v denotes the extension of
predicate φ in v, then a strongly exhaustive answer to question ?x.φ(x) is a proposition of the
form [v]φ := {w ∈ Ω | [[φ]]w = [[φ]]v}; i.e. it collects all worlds where predicate φ has the same

extension. The set of all possible answers is then given by [[?x.φ(x)]]GS := {[v]φ |v ∈ Ω}. This

poses a problem for mention–some answers as they are not elements of [[?x.φ(x)]]GS , hence
not answers at all.

3For a short survey of positions regarding mention–some interpretations see (Groenendijk
& Stokhof, 1997)[Sec. 6.2.3].

4Hence, the reader who disagrees with me on the relation between mention–some and
mention–all answers will still get the full value out of the game theoretic model.
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The response in (3e) contributes to a project (G4) that is again super-ordinated
to getting a ticket. We wouldn’t call the responses in (3c) to (3e) answers. A
more appropriate name is probably reaction.

Due to our assumption that strongly exhaustive answers are basic, we assume
that a question ?x.φ(x) itself introduces the immediate goal of providing the
strongly exhaustive answer (G0). Writing the sub-ordination relation as < we
find in Example (3) that this immediate goal is embedded in a hierarchy of goals
G0 < G1 < G2 < G3 < G4. The following mechanism explains the possibility
of responses as in (3): Super-ordinated goals can override the immediate goal
of providing a strongly exhaustive answer. Mention–some answers contribute to
a goal that is super–ordinated to the basic goal G0. The information conveyed
by them is optimal with respect to this super–ordinated goal. It is the aim
of this paper to precisely characterise this optimality in game theoretic terms.
This provides the general idea how to derive the possibility of mention–some
answers.

In a game theoretic model we can represent a goal by a utility function. A
natural way to do this is by setting u(v, a) := 1 if we reach the goal in situation
v after execution of action a, and u(v, a) = 0 if we don’t reach it. If in Example
(1) a is the act of going to the station and v a world where there are Italian
newspapers at the station, then act a leads to success, and hence u(v, a) = 1.
Utility measures can represent more fine–grained preferences over the outcomes
of actions: e.g. if the inquirer wants to buy an Italian newspaper but prefers to
buy it at the Palace because it is closer to his place, then this can be represented
by assigning higher values to buying Italian newspapers at the Palace than to
buying them at the station.

Finally, we should emphasise that we consider only direct questions, i.e. no
syntactically embedded questions. If we know what is the optimal answer to a
question Q?, then we do not necessarily know how to interpret it if it occurs as
a syntactically embedded question.

(4) a) Peter knows where to buy an Italian newspaper.

b) Peter knows where to buy best an Italian newspaper.

These two sentences are not equivalent. If the set of optimal answers were identi-
cal with the meaning of the embedded sentence, then they should be equivalent.
Hence, by determining optimal answers, we make no claim about embedded
questions.

The Utility of Answers

As mentioned before, our background assumptions do not immediately affect
the following analysis of partial and mention–some answers. The key–idea is to
see questioning and answering as embedded in a decision problem. It is due to
Robert van Rooij who explored it in quite a number of papers.5 I see it as one
of the most interesting contributions of game and decision theory to pragmatics
until now. To motivate this move, we look at some examples. In (1), the

5E.g. (v. Rooij, 2001, 2003,a,b). Why do we ask questions? Because we want to have
some information. But why this particular kind of information? Because only information of
this particular kind is helpful to resolve the decision problem that the agent faces. (v. Rooij,
2003a, p. 727).
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inquirer has to decide where to go to in order to buy an Italian newspaper.
Other examples that allow a mention–some answer are:

(5) a) (In a job centre) I am a computer expert. Where can I apply for a
job?

b) I like to go skiing in the Alps. What places can you recommend?

c) (In a job interview) What are your qualifications?

In (5a), the inquirer has to decide where to apply for a job. In (5b), he has to
decide where to go to for skiing; in (5c), whether or not to employ a candidate.
In each case there is a finite set of actions {a1, . . . , an} and the inquirer asks
for information that helps him to make an optimal choice among them. In (1)
this set may be represented as {go-to(x) | x a newspaper kiosk in Amsterdam};
in (5a) as {send-application-to(x) | x a group of regional software companies};
in (5b) as {travel-to(x) | x a valley in the Alps}; in (5c) as {employ, not-
employ}. The decision depends on the preferences of the decision maker over
the outcomes of these actions, and on his/her information about the state of the
world. We assume that there is a fixed set Ω that collects all possible states. If
the decision maker does not have complete information, then he has to rely on
his expectations about the world. We can represent them by the probabilities
he/she assigns to the different possible states. In order to keep things simple,
we assume that there are only countably many states of the world, i.e. that Ω is
countable. In this case, a probability distribution is just a real valued function
P : Ω −→ R such that (1) P (v) ≥ 0 for all v ∈ Ω and (2) the sum of all P (v)
equals 1. For sets A ⊆ Ω it is usual to set P (A) =

∑
v∈A P (v). Hence P (Ω) = 1.

We collect these elements in a structure:

Definition 2.1 A decision problem is a triple 〈(Ω, P ),A, u〉 such that (Ω, P )
is a countable probability space, A a finite, non–empty set and u : Ω×A −→ R
a function. A is called the action set, and its elements actions. u is called a
payoff or utility function.

A decision problem represents the inquirer’s problem. By asking his question
he makes it common knowledge. Again for simplicity, we assume here that his
beliefs represented by the probability space (Ω, P ) are mutually known, too. In
order to indicate that a probability distribution represents the inquirer’s beliefs
we write PI .

How does the situation change if we include the answering expert in our
model? The only parameter that we add to our formal structure is a probability
distribution PE that represents her expectations about the world:

Definition 2.2 A support problem is a five–tuple 〈Ω, PE , PI ,A, u〉 such that
(Ω, PE) and (Ω, PI) are countable probability spaces, and 〈(Ω, PI),A, u〉 is a
decision problem. We call a support problem well–behaved if (1) for all A ⊆ Ω :
PI(A) = 1 ⇒ PE(A) = 1 and (2) for x = I, E and all a ∈ A :

∑
v∈Ω Px(v) ×

u(v, a) < ∞.

The first condition for well–behavedness is included in order to make sure
that E’s answers cannot contradict I’s beliefs,6 the second is there in order to

6See Fact 3.1 below on p. 8.
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keep the mathematics simple. A support problem represents just the fixed static
parameters of the answering situation. We assume that I’s decision does not
depend on what he believes that E believes. Hence his epistemic state (Ω, P )
represents just his expectations about the actual world. E’s task is to provide
information that is optimally suited to support I in his decision problem. Hence,
E faces herself a decision problem, where her actions are the possible answers.
The utilities of the answers depend on the way how they influence I’s final
choice. We look at the dependencies in more detail. We find two successive
decision problems:

Expert E I decides Evaluation
answers for action

↓ ↓ ↓

•
A

−−→ •
a

−−→ •
↑ ↑ ↑

expectations expectations utility
of E of I function

(Ω, PE) (Ω, PI) u(v, a)

We assume that the answering expert E is fully cooperative and wants to
maximise I’s final success. Hence, E’s payoff is identical with I’s. E has to
choose his answer in such a way that it optimally contributes towards I’s deci-
sion. Due to our assumption that I’s information is mutually known, E is able
to calculate how I will decide. Hence, we represent the decision process as a
sequential two-person game with complete coordination of preferences. We find
a solution, i.e. optimal answers and choices of actions by calculating backward
from the final outcomes.

The following model will be worked out using standard techniques of game
and decision theory. We concentrate on ideal dialogue. By this we mean that
all participants have only true beliefs and adhere to the Gricean maxims — as
far as they are necessary. The Cooperation Principle e.g. is represented by the
fact that we consider only games of pure coordination. We will introduce other
maxims together with our analysis.

Calculating Backward Expected Utilities

First we have to consider the final decision problem of I. The probability PI in
our support situation is intended to represent his beliefs before E has given her
answer. Hence, we have to say how an answer will change these beliefs. In prob-
ability theory the effect of learning a proposition A is modelled by conditional
probabilities. The related learning model is known as Bayesian learning. Let H
be any proposition, e.g. the proposition that there are Italian newspapers at the
station; or that software companies x, y, z offer jobs for computer experts. H
collects all possible worlds in Ω where these sentences are true. Let C be some
other proposition, e.g. the answer given by our expert. Then, the probability of
H given C, written P (H|C), is defined by:

P (H|C) := P (H ∩ C)/P (C). (2.1)

This is only well–defined if P (C) 6= 0. Lets consider an example. I thinks
that the probability that the station has Italian newspapers and that the owner
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of the newspaper store there is Italian is 1/50, i.e. PI(H ∩ C) = 1
50 . (2) He

thinks that the probability that in general the owner is Italian is PI(C) = 2
50 . It

follows that in every second world where the owner is Italian, he must also sell
Italian newspapers. If now I learns from E’s answer that the owner is indeed
Italian then he should belief that there are Italian newspapers at the station
with probability 1/2: With (2.1) we calculate P (H|C) = 1

50 : 2
50 = 1

2 .

I’s Decision Situation

How does I choose his action? It is standard to assume that rational agents try
to maximise their expected utilities: Let 〈(Ω, P ),A, u〉 be any decision problem.
Then, the expected utility of an action a is defined by:

EU(a) =
∑
v∈Ω

P (v)× u(v, a). (2.2)

As the effect of learning a proposition A with P (A) > 0 is modelled by condi-
tional probabilities, we get the expected utility after learning A by:

EU(a,A) =
∑
v∈Ω

P (v|A)× u(v, a). (2.3)

As we assumed that the decision maker I tries to maximise expected utilities
by his choice, it follows that he will only choose actions that belong to {a ∈
A | EU〈Ω,PI〉(a,A) is maximal}. In addition we assume that I has always a
preference for one action over the other, or that there is a mutually known rule
that tells I which action to choose if this set has more than one element. In
this case we can write aA for this unique element. In short, we assume that the
function A 7→ aA, for PI(A) > 0, is known to E.

E’s Decision Situation

According to our assumption, E’s payoff function is identical with I’s payoff
function u, i.e. questioning and answering is a game of complete coordination
(Principle of Cooperation). In order to maximise his own payoff, E has to
choose an answer such that it induces I to take an action that maximises their
common payoff. We use again (2.2) for calculating the expected utility of an
answer A ⊆ Ω. With aA defined as in the previous paragraph we get:

EUE(A) :=
∑
v∈Ω

PE(v)× u(v, aA). (2.4)

We add here a further Gricean maxim, the Maxim of Quality. We call an
answer admissible if PE(A) = 1. The Maxim of Quality is represented by the
assumption that the expert E does only give admissible answers. This means
that she believes them to be true. For a support problem S = 〈Ω, PE , PI ,A, u〉
we set:

AdmS := {A ⊆ Ω | PE(A) = 1} (2.5)

Hence, the set of optimal answers for S is given by:

OpS = {A ∈ AdmS | ∀B ∈ AdmS EUE(B) ≤ EUE(A)}. (2.6)
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3 Examples

We consider only well–behaved support problems 〈Ω, PE , PI ,A, u〉, i.e. for all
A ⊆ Ω : PI(A) = 1 ⇒ PE(A) = 1. As mentioned before, the condition
PI(A) = 1 ⇒ PE(A) = 1 entails that E’s answers cannot contradict I’s beliefs.
More precisely, we find:

Fact 3.1 Let (Ω, PE , PI ,A, u) be a given support problem, then the condition
∀A ⊆ Ω (PI(A) = 1 ⇒ PE(A) = 1) entails for all A,B ⊆ Ω:

1. PE(A) = 1 ⇒ PI(A) > 0,

2. PI(A|B) = 1 & PE(B) = 1 ⇒ PE(A) = 1.

We start with our main example (1), i.e. with the question: Where can I buy
an Italian newspaper? We first describe the general scenario before justifying
the different types of answers.

We denote by a, b the actions of going to the station and going to the Palace.
There may be other actions too. Let A ⊆ Ω be the set of worlds where there
are Italian newspapers at the station, and B ⊆ Ω where they are at the Palace.
We represent the payoffs as follows: For every possible action c ∈ A the utility
value is either 1 (success) or 0 (failure); especially we assume that u(v, a) = 1
iff v ∈ A, else u(v, a) = 0; u(v, b) = 1 iff v ∈ B, else u(v, b) = 0.

Mention–Some Answers

We have to show that the mention–some answers are equally good as the strongly
exhaustive answer (SE). Technically this means that we have to show that: if
A, B and SE are admissible answers, then EUE(A) = EUE(B) = EUE(SE).

We start with answer A: If E knows that A, then A is an optimal answer.
If learning A induces I to choose action a, i.e. if aA = a, then the proof is very
simple:

EUE(A) =
∑
v∈Ω

PE(v)× u(v, aA) =
∑
v∈A

PE(v)× u(v, a) = 1.

Clearly, no other answer could yield a higher payoff. If we want to prove the
claim in full generality, i.e. for all cases, may they be as complicated as they can
be as long as our previously formulated restrictions hold, then we need some
more calculation. We first note the following fact: Lets assume that I chooses
after learning A an act c different from a, i.e. aA = c 6= a. Then let C denote
the set where action c is successful, i.e. C = {v ∈ Ω | u(v, c) = 1}. Then either
(i) PE(C) = 1 or (ii) PE(C) < 1. In the first case (i) it follows again that
EUE(A) = 1, and our claim is proven. Case (ii) leads to a contradiction by
Fact 3.1: If I chooses c, then EUI(c|A) = maxc′∈A EUI(c′|A) = EUI(a|A) = 1;
hence PI(C|A) = 1, and therefore PE(C) = 1 in contradiction to (ii). It follows
that only (i) is possible.

In the same way it follows that B is optimal if E knows that B. The same
result follows for any stronger answer, including the strongly exhaustive answer
SE, A ∧B or A ∧ ¬B. This shows that their expected utilities are all equal as
long as they are admissible answers. We have no condition that represents the
Maxim of Manner, hence all these answers are equally good and E can freely
choose between them.
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Partial Answers

We now turn to Example (1e). Let A and B denote the complements of A and
B. We assume here in addition that I can only choose between a and b, i.e.
between going to the station and going to the Palace. We show: If E knows
only ¬A, hence PE(A) = 1, then ¬A is an optimal answer. We first assume that
learning ¬A leads I to choose action b, i.e. if I learns that there are no Italian
newspapers at the station, then he will go to the Palace:

EUE(A) =
∑
v∈Ω

PE(v)× u(v, aA) =
∑
v∈A

PE(v)× u(v, b)

= PE(A ∩B) = PE(B).

Let C be any proposition. If PE(C) = 1, then either av
C = a or av

C = b;
hence either EUE(C) = 0 or EUE(C) = PE(B). Here enters: PE(C) = 1 ⇒
PE(C ∩A) = 0. Hence, no other answer than ¬A can be better. It is important
that I can only choose between actions a and b. The result holds even if C = B.

What happens, if I doesn’t choose b but a? This means that 0 = EUI(a|A) =
max{EUI(a|A), EUI(b|A)}, hence EUI(b|A) = 0. This entails that PI(B∩A) =
0 = PE(B ∩A). Hence, E believes that there are neither Italian newspapers at
the station nor at the Palace, hence no answer can rise expected utilities above
0. This concludes discussion of Example (1e).

Non–trivial Partial Answers

Non–trivial partial answers will play a significant role when we discuss relevance
based approaches. We consider the same general setting as before; especially
the utility functions are defined as before, and I can only choose between a and
b. Lets consider the following example:

(6) There is a strike in Amsterdam and therefore the supply with foreign
newspapers is a problem. The probability that there are Italian newspa-
pers at the station is slightly higher than the probability that there are
Italian newspapers at the Palace, and it might be that there are no Italian
newspapers at all. All this is common knowledge between I and E. Now
E learns that (N) the Palace has been supplied with foreign newspapers.
In general, it is known that the probability that Italian newspapers are
available at a shop increases significantly if the shop has been supplied
with foreign newspapers.

We model the epistemic states described in (6) by the following condition:

PI(A) > PI(B) and Px(B ∩N) > Px(A ∩N) for x = I, E. (3.7)

As before, PE describes E’s beliefs when choosing her answer, i.e. after learning
N , and PI describes I’s beliefs before learning E’s answer. Is N an optimal
answer? Lets first calculate I’s reaction:

EUI(a,N) =
∑
v∈N

PI(v|N)× u(v, a) = PI(A ∩N);

and

EUI(b, N) =
∑
v∈N

PI(v|N)× u(v, b) = PI(B ∩N).
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Hence, he will choose b, i.e. aN = b. With (2.4) we get for E:

EUE(N) =
∑
v∈N

PE(v)× u(v, b) = PE(N ∩B) = PE(B) > PE(A).

It is easy to see that for any answer C either EUE(C) = P (A) or EUE(C) =
P (B). Hence, N is an optimal answer.

Now we change the scenario slightly:

(7) We assume the same scenario as in (6) but E learns this time that (M) the
Palace has been supplied with British newspapers. Due to the fact that
the British delivery service is rarely affected by strikes and not related to
newspaper delivery services of other countries, this provides no evidence
whether or not the Palace has been supplied with Italian newspapers.

The fact that M provides no evidence whether or not there are Italian newspaper
at the station (A) or the Palace (B) means that PE(A) = PE(M∩A) > PE(M∩
B) = PE(B). I’s epistemic state has not changed from (6), hence we assume
again that PI(A) > PI(B) and PI(A∩N) < PI(B ∩N). What are the optimal
answers? If E says nothing, i.e. if she answers Ω, then the expected payoff is
EUE(Ω) = PE(A). Is there a better answer than saying nothing? Let C be such
that PE(C) = 1. Then either I will go to the station, i.e. choose a, or go to the
Palace, i.e. choose b. Hence, EUE(C) = PE(A) or EUE(C) = PE(B) < PE(A).
This shows that I cannot provide any information that does better than Ω. Is
N still an optimal answer? We find that answering with N leads I to go to
the Palace, and therefore EUE(N) = PE(B) < EUE(Ω). Hence, N cannot be
a best answer. It would be misleading if E replied that the Palace has been
supplied with foreign newspapers.

Now, lets finally consider:

(8) We assume the same scenario as in (6) where E learns that (N) the Palace
got supplied with foreign newspapers but her intuition tells her that, if
there have been Italian newspapers among them, then they are sold out
before I can get there. Of course, this is only a conjecture of hers.

We assume here that her expectations are so strong that still PE(A) > PE(B).
As in (6), we assume that PI(A) > PI(B) and PI(A ∩ N) < PI(B ∩ N). We
find again that answering N , i.e. that the Palace got foreign newspapers, will
induce I to do b. Again it follows that E thinks that this is misleading. Hence,
again N is not an optimal answer.

In our model, the place of Grice’ Maxim of Relevance was taken over by
the assumption that interlocutors are Bayesian utility maximisers, i.e. by the
assumption that rational agents choose actions that maximise their expected
payoffs. This principle is somewhat alien to the linguistic pragmatic tradition,
hence, we may ask: Isn’t it possible to replace it again by the more familiar
Gricean maxim? In order to answer this question we need a halfway precise
formulation of this principle. We discuss in the next section some explications
in decision theoretic terms. We prove in Section 5 that no possible decision
theoretic explication of the Maxim of Relevance can explain examples (6)–(8).
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4 Relevance

The Gricean Maxim of Relevance is, of course, a natural candidate for explaining
our judgements about the appropriateness of various partial and mention–some
answers. Hence, game and decision theoretic explications of this maxim are
of immediate interest for our investigation. Roughly, relevance measures the
(psychological) impact of an assertion on the addressee’s beliefs. In decision
theory there is only one decision maker. He may be uncertain about the state
of the world but there are no other players who’s moves or beliefs he has to take
into account.7 In a proper game theoretic problem, the payoffs of one player’s
moves depend on the moves of the other players, and vice versa. Hence, the
more general question behind the discussion of the next two sections is whether
or not it is essential that we model questioning and answering as a two–person
game.

We divide our discussion of explications of relevance into two sections. The
first one addresses proposals that measure relevance in terms of the amount
of information carried by an utterance, the second one on proposals that, in
addition, take into account the expected utilities. The first one concentrates
mainly on the approach by Arthur Merin (Merin, 1999), the second one on
work by Robert van Rooij.8

Information Based Measures of Relevance

If the stock market is rising (D), it indicates that the economy prospers, and
therefore probably the unemployment rate will sink. We can see the situation as
a competition between two hypotheses: (H) The unemployment rate sinks, and
(H) the unemployment rate doesn’t sink. H and H are mutually exclusive and
cover all possibilities. D, the rising of the stock market, does not necessarily
imply that H, but our expectations that the unemployment rate will sink are
somewhat higher after learning D than before. We can say, that fact D is
positively relevant for our belief that H. We can model the change of degree of
belief by conditional probabilities as indicated previously, and based on them,
it is possible to derive measures of relevance. We discuss here one proposal by
Merin in more detail.

Merin (1999) defines relevance as a relation between a probability function
P representing expectations in some given epistemic context i = (Ω, P ) and
two propositions: a proposition H, the hypothesis, and a proposition D, the
evidence. This leads to the following definition:9

Definition 4.1 (Relevance, Merin) The relevance ri
H(D) of proposition D

to proposition H in an epistemic context i represented by a conditional proba-
bility function P i(.|.) is given by ri

H(D) := log(P i(D|H)/P i(D|H)).

Merin applies this measure to communication situations. In its new domain we
can see log(P i(D|H)/P i(D|H)) as the (possibly negative) argumentative force
of D to make the addressee believe that H. The details of the definition are
not of concern here. ri

H(D) can be positive or negative according to whether D
influences the addressee to believe or disbelieve H. In the same way it favours

7Sometimes nature is considered to be a second player.
8We concentrate on his earlier work (2001; 2003) and (2003a; 2003b).
9(Merin, 1999), Definition 4.
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H it disfavours H, i.e. ri
H(D) = −ri

H
(D). In a situation where the speaker

wants to convince the hearer that H an assertion D is the more effective, or
relevant, the bigger ri

H(D). If ri
H(D) = 0 then it neither favours nor disfavours

any of the two hypotheses, and it is reasonable to call D irrelevant.
What is of concern for us now is only the fact that ri

H takes as parameters
the elements of a tuple 〈Ω, P, H,D〉. Merin takes an argumentative attitude
towards communication, i.e. he sees the aim of convincing the conversational
partner of some hypothesis H as the basic goal of communication. For this
purpose it is reasonable to choose the proposition that has the greatest impact
on the addressee’s beliefs, i.e. the most relevant proposition. This means that
we can define by means of r−− a decision function R that selects for each context
〈Ω, P, H〉 a proposition D with maximal argumentative force.

Let us consider how to apply Merin’s measure for the relevance of assertions
to questioning and answering situations. If the inquirer I asks whether φ, then
we can set H := {v ∈ Ω | v |= φ}, and H := {v ∈ Ω | v 6|= φ}. Assume we
are in a job interview, I wants to know whether E is qualified for the job (H)
or not (H). Hence, he asks her about her qualifications. E has to find the
strongest argument that is not already known to I for convincing him of H.
Maybe, she didn’t mention in her resume that (D) she worked as a student
regularly in a similar company, which indicates that she knows the business. If
this is indeed her strongest argument, then she should use it. But the selected
answer may be highly misleading, even if it is truthful. E.g. it may be that E
didn’t mention this information in her resume because she worked only at the
telephone switchboard.

If we decide to use a decision theoretic model for the conversational phe-
nomenon we investigate, then this implies that one person plays the role that
nature plays in an experiment, i.e. the decision function R does not depend on
his preferences and expectations. In both cases, in scientific experimentation
and in communication, relevance is then only defined from the receiver’s per-
spective. If the measure of relevance is based only on information, it does not
even take his utilities into account. Hence it shows its limits in situations like
the following: Lets call our applicant Eve. We assume that Ω consists of four
worlds {v1, . . . , v4} of equal probability. In world v1 Eve is a highly qualified
and experienced applicant who can start right at the job. In v2 she is qualified
but needs some more training. In v3 and v4 she is not qualified with only minor
differences between the two states. I, who read her resume, asks a colleague,
E, whether she knows more about this applicants abilities. Now assume that
E knows that D = {v2, v3}. Is D relevant? If the decision maker learns D,
then, using Merin’s measure, it turns out that rH = log(P (E|H)/P (E|H)) = 0.
Hence, D is irrelevant. But, intuitively, it is relevant for the decision maker to
learn that the most favoured situation v1 cannot be the case.

Utility Based Measures of Relevance

The last example shows that, in general, we have to consider the interlocutors
preferences. Van Rooij’s idea was to look at the communicative situation as a
problem of decision theory and thereby to derive a criterion for the relevance of
questions and answers.

Lets consider an example. An oil company has to decide where to build a
new oil production platform. Given the current information it would invest the
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money and build the platform at a place off the shores of Alaska. An alternative
would be to build it off the coast of Brazil. So the ultimate decision problem is
to decide whether to take action a and build a platform off the shores of Alaska,
or take action b and build it off the shores of Brazil.

Getting the results of the exploration drilling, the company has to decide
whether to go ahead and follow their old plans and built the production platform
in the north, or to redesign them and build it off Brazil. One heuristic says that
information can only be relevant if it induces the company to choose an action
that promises higher payoff than the action it would have chosen before getting
this information. This heuristic leads to the following definitions of relevance: A
proposition A is relevant if learning A induces the inquirer to change his decision
about which action a to take, and is the more relevant the more it increases the
inquirer’s expectations. Let a∗ denote the action where the expected payoff is
maximal relative to the information available before drilling, represented by P .
Then the utility value10 of proposition A is defined as:

UV (A) = max
a∈A

EU(a,A)− EU(a∗, A). (4.8)

A is relevant for the decision problem if UV (A) > 0.
In our example, UV (A) can only be higher if newly learned information can

induce the company to build the oil platform off the shores of Brazil (action b),
and not off the shores of Alaska (a = a∗).

The utility value UV is defined from the investigator’s perspective. Meta-
phorically speaking, we can call an experiment a question to nature, and a result
an answer from it. The answering person, nature, is not providing information
with respect to the investigator’s decision problem. There is only one real person
involved in this decision model, namely the inquirer himself. Nature shows oil,
or doesn’t show oil, according to whether there is oil where the exploration
drilling takes place or not. It does not deliberate and show it in order to help
the investigator, or because it thinks that this is relevant. The model does not
predict that nature will only give relevant answers, and it does not even say that
this were desirable! E.g. assume that there is indeed a very large oil field in the
area near Alaska where the company wanted to build the platform given its old
information, and a very small oil field in the Brazilian area. If the exploration
drilling confirms that the original decision was right, then this is, according to
our criterion, irrelevant. Only if by some bad luck the drilling in the Brazilian
area gives rise to the hope that there is more oil than in Alaska, we got relevant
information. So even from the companies, i.e. the receiver’s perspective, relevant
information is not the same as desirable information.

In (2001) van Rooij used (4.8) as a measure for the relevance of answers.11

10This type of situation has been thoroughly studied in statistical decision theory. Compare
e.g. (Raiffa & Schlaifer, 1961, Sec. 4.5) and (Pratt et al., 1995).

11In later work v. Rooij tested other measures, e.g. (4.9) in (2003), (2003a), and compares
quite a number of possible definitions in (2004). Prashant Parikh (1992) seems to be the first
one who introduced (4.8) as a measure of linguistic relevance. Rohit Parikh (1994) used it for
measuring the usefulness of communicated (vague) information.

It should be noted here that, in order to derive the semantics for embedded interrogatives,
v. Rooij introduces an operator that combines the effects of the principles of relevance and
quantity, see e.g. (2003a, Sec. 5.2). This was worked out further under the name of exhaus-
tification, e.g. (2004). The operator is based on an order of relevance that is introduced as
a special case of the order based on UV (A) in the sense of (4.9). A due discussion of the
relation between v. Rooij’s exhaustification operator and the results of this paper must wait
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We concentrate on this early proposal because, as we think, it shows quite
clearly the principled limitations of a relevance based approach. Information is
evaluated only from the inquirer’s perspective, and as our example shows, this
value is not identical with its desirability.

Although, a measure like (4.8) is defined only from one person’s perspec-
tive we can apply it to the communication situation. We have to ask: Who’s
probability is P? There are three possibilities:

1. It is the inquirer’s subjective probability.

2. It is the expert’s subjective probability.

3. It is the subjective probability that E assigns to I.

Alternatives 1. and 2. are unsatisfactory. If 1., then measures like (4.8) cannot
be applied by E, except 1. and 3. coincide. If we assume that (a) the expert can
only give answers that he believes to be true, then 2. implies that any answer
A will do because then EU(a,A) = EU(a) for all a. In order to turn the model
into a model for a two-person game we have to choose interpretation 3.12 In this
case (4.8) advises the answering expert only to choose answers that can make
I change his decision. The same problem that we found in the example with
the oil company and its exploration drilling, we find with respect to questioning
and answering:

(9) Assume that it is common knowledge between I and E that there are
Italian newspapers at the station with probability 2/3, and at the Palace
with probability 1/3. Now, E learned privately that they are in stock at
both places. What should E answer if she is asked (1): Where can I buy
an Italian newspaper?

According to the initial epistemic state, I decided to go to the station. Lets
consider three possible answers: (A) There are Italian newspapers at the station;
(B) There are Italian newspapers at the Palace, and (A∧B). Intuitively, all three
are equally good. Some calculation shows that B is the only relevant answer
according to (4.8). What (4.8) shows us is that B has the largest practical
impact, but this is not the same as maximising joint payoff. The generalisation
we are after is to show that the same problem shows up with any measure of
relevance. We provide a formal proof in the next section.

As a further example we look at the following definition of utility value, also
proposed by van Rooij13 as an explication for relevance:

UV (A) = max
a∈A

EU(a,A)−max
a∈A

EU(a). (4.9)

(4.9) gives the advice: ‘Increase the hopes of the inquirer as much as you can!’
This fixes the problem with Example (9) but it’s easy to see that we run into
a similar problem with negative information: Assume that in the scenario of
Example (9) E learns that there are no Italian newspapers at the station (¬A);
in this case (4.9) implies that ¬A is not relevant because it does not increase the
inquirer’s expectations. This seems to be quite unintuitive. But the problem

for another occasion.
12Of course, that is the intended interpretation.
13See also (v. Rooij, 2003, Sec. 3.1) and (v. Rooij, 2003a, Sec. 3.3).
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can be easily fixed again by taking the absolute | | of the right side of (4.9). But
even here we find an example that shows a difference between the so–defined
relevance and desirability. An answer that increases, or changes, the hopes of the
inquirer as much as possible is not necessarily a good answer. We consider again
Example (7). Some calculation shows that, according to (4.9), E should answer
that the Palace has been supplied with foreign newspapers. The same holds for
the improved version of (4.9) with the absolute difference. As the probability
that there are Italian newspaper at the Palace, given that the Palace has been
supplied with foreign newspaper, is much higher than the assumed probability
for there being Italian newspapers at the station, this answer should lead the
inquirer to go to the Palace. But this is the wrong choice as probabilities are
higher that there are Italian newspapers at the station. A good answer should
maximise the inquirer’s chances for real success, and not maximally increase or
change his expectations about success.

Van Rooij was aware that relevant answers might be misleading. In Sec. 4.2
of (v. Rooij, 2003) he discusses two reasons: The answering person (1) lacks
important information or (2) has a reason to withhold information, e.g. due
to opposing interests. The situations described in our examples differ in both
respects: In (7), (8) and (9) the interests completely coincide, and the expert
has all the information necessary to decide that the answers picked out by
criteria (4.8) and (4.9) are not optimal.

Relevance based Decision Functions

There are a number of reasonable decision theoretic explications for the notion
of relevance. If we call information relevant, then the meaning of this depends
on the special circumstances of the situation including the purposes of the inter-
locutors. In his recent work,14 van Rooij discusses not one specific measure of
relevance but compares whole groups of interesting explications and their merits
and demerits in special applications. Hence, the measures that we discussed so
far are only examples for types of measures.

Let S be the set of all support problems over a given set Ω, and for S ∈ S let
DS denote its associated decision problem. AdmS denotes, as defined in (2.5),
the set of admissible answers of S. Let D := {〈DS , AdmS〉 | S ∈ S}.

For the purpose of our paper, we can divide relevance measures into two
groups: (i) in measures that depend only on a decision problem 〈(Ω, P ),A, u〉
and pick out a relevant answer that depends on the admissible sets, i.e. measures
that define a decision function R : D −→ P(Ω) such that every R(DS , AdmS) is
optimally relevant; (ii) in measures that depend in addition on a given hypoth-
esis H such that they define a decision function R : D × P(Ω) −→ P(Ω) such
that R(DS , AdmS ,H) is of optimal argumentative force with respect to H. The
second group corresponds roughly to the argumentative view of communication
defended by Merin. Hence, we call the first group of decision functions non–
argumentative, and the second group argumentative decision functions. The
distinction cross classifies with our distinction between information and util-
ity based measures, but, as a contingent matter of fact, the information based
measure discussed previously belongs to the second class, and the utility based
measures to the first class.

14See (v. Rooij, 2004).
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Our aim in the next section is (1) to show that no non–argumentative mea-
sure of relevance can always pick out an optimal answer as defined by (2.6). Fol-
lowing our previous analysis, this implies that no non–argumentative measure
can be empirically adequate. For every measure there will be a well–behaved
support problem where the most relevant answer is not optimal. (2) We will
show how our construction in Section 2 can be used to define an adequate ar-
gumentative decision functions in the sense of (ii).

5 Relevance and Best Answers

Given a support problem S = 〈Ω, PE , PI ,A, u〉 we call any answer in OpS as
defined by (2.6) a best answer. The construction in Section 2 defines functions
BA : S −→ P(Ω) that pick out optimal answers for each support problem
S, i.e. with BA(S) ∈ OpS for all S ∈ S. It is the purpose of this section to
study the relation between such best answer decision functions and functions
that choose optimally relevant answers. This section does not need more math-
ematical skills than the previous ones, but its presentation is necessarily more
formal and compact. We made a number of assumptions when we constructed
optimal answers in Section 2. We start with a summary. We considered support
problems S = 〈Ω, PE , PI ,A, u〉 such that

1. S is well–behaved;

2. The answering person can only choose answers from AdmS = {A ⊆
Ω | PE(A) = 1} (Maxim of Quality);

3. There is a commonly known function a : AdmS −→ A, A 7→ aA, that
chooses for each admissible answer A an action aA that is optimal from
I’s perspective. aA is the action that I will perform after learning A.15

The last assumption was necessary in order to guarantee that E can calculate
the effects of an answer in cases where there are several optimal choices for I.

For our purposes we need a precise definition of misleading answer. An
answer is misleading, if it induced the inquirer to perform an action of which E
believes that it is not optimal:

Definition 5.1 (Misleading Answer) Let 〈Ω, PE , PI ,A, u〉 be a given sup-
port problem and a : AdmS −→ A, A 7→ aA, as above, then an answer A ⊆ Ω
is misleading, iff EUE(aA) 6= maxa∈A EUE(a).

Partial answers are answers like ‘There are no Italian newspapers at the
station’ in (1e). This answer still rules out one of the actions, namely going
to the station. Roughly, we call a partial answer non–trivial if there are at
least two actions a, b such that it doesn’t rule out both of them. There are still
possible worlds where a is best, and others where b is best. This holds for both
interlocutors. The answers in examples (6)–(8) are of this type.

15The last assumption was introduced on p. 7. For the definitions of well–behavedness and
admissibility of answers see Definition 2.2 and Equation (2.5).
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Definition 5.2 Let S = 〈Ω, PE , PI ,A, u〉 be a given support problem, then S
has a non–trivial partial answer C, iff there exist actions a, b ∈ A and a :
AdmS −→ A, A 7→ aA, as above, such that for

A := {v ∈ Ω | u(v, a) > u(v, b)}
B := {v ∈ Ω | u(v, b) > u(v, a)}

it holds that (1) Px(C), Px(A|C), Px(B|C) > 0, for x = I, E, and (2) a = aA.

Think we have a support problem and we have successfully defined a measure
of relevance that picks out an answer C that happens to be an optimal answer
too. As a decision theoretic model does only take account of the preferences
and beliefs of one player, we can redefine the beliefs of the other player without
changing the value of the measure of relevance. If C is partial and nontrivial,
we can do it in such a way that C becomes thereby a misleading answer.

Theorem 5.3 For every well–behaved support problem S = 〈Ω, PE , PI ,A, u〉
with a non–trivial partial admissible answer C exists a probability distribution
P ′

E on Ω such that for the support problem S′ = 〈Ω, P ′
E , PI ,A, u〉 (1) the ad-

missible answers are the same as for S and (2) C is a misleading admissible
answer.

Proof: Let 〈Ω, PE , PI ,A, u〉 and C be given as in the theorem. Then, by
Definition 5.2 there exist a, b ∈ A such that for

A := {v ∈ Ω | u(v, a) > u(v, b)} and B := {v ∈ Ω | u(v, b) > u(v, a)}

it is Px(A|C), Px(B|C) > 0, x = I, E, and EUI(a|C) = maxc∈A EUI(c|C). As
abbreviations we use B := {v ∈ Ω | u(v, a) ≥ u(v, b)} = Ω \B. We write:

P ′′
E(v) :=

{
PE(v|B) for v ∈ B
PE(v|B) for v ∈ B

Then we set:

Na :=
∑
v∈A

P ′′
E(v) · (u(v, a)− u(v, b)) > 0

Nb :=
∑
v∈B

P ′′
E(v) · (u(v, b)− u(v, a)) > 0.

Clearly, Na, Nb > 0. Now we can define the probability distribution P ′
E :

P ′
E(v) := P ′′

E(v) · Nb

2(Na + Nb)
for v ∈ B;

P ′
E(v) := P ′′

E(v) ·
(

1− Nb

2(Na + Nb)

)
for v ∈ B.

P ′
E is obviously a probability distribution over Ω. Let N := Nb/(2(Na + Nb)).

We first show (1), i.e. that the admissible answers are the same. This follows
from elementary calculations; we show only P ′

E(D) = 1 ⇒ PE(D) = 1. Let α :=
PE(D|B) and β := PE(D|B). If α < 1 or β < 1, then P ′

E(D) = αN+β(1−N) <
N+(1−N) = 1. Hence α = β = 1, and it follows that PE(D) = 1. Next we show
(2). By assumption we know that EUI(a|C) = maxc∈A EUI(c|C). Hence, in
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order to show that C is misleading we have to prove that EUP ′
E
(a) < EUP ′

E
(b).

It is

EUP ′
E
(c) =

∑
v∈B

P ′
E(v) · u(v, c) +

∑
v∈B

P ′
E(v) · u(v, c) for all c ∈ A.

We find that EUP ′
E
(b)− EUP ′

E
(a) =∑

v∈A

P ′′
E(v)N(u(v, b)− u(v, a)) +

∑
v∈B

P ′′
E(v) (1−N) (u(v, b)− u(v, a)) =

= N · (−Na) + (1−N) · (Nb) =
−NaNb

2(Na + Nb)
+ Nb −

N2
b

2(Na + Nb)

= Nb −Nb ·
1
2
· Na + Nb

Na + Nb
=

1
2
Nb > 0.

This shows that from E’s perspective b would be the preferable action. Hence,
C is misleading and (2) is proven.
From this theorem it follows immediately:

Corollary 5.4 Let S be the set of all support problems over Ω. For S ∈ S
let DS denote its associated decision problem. Let D := {〈DS , AdmS〉 | S ∈ S}
where AdmS is the set of admissible answers of S. Then there exists no function
R : D −→ P(Ω) such that for all S ∈ S : R(DS , AdmS) ∈ OpS.

In (6)–(8) we saw examples where an empirically adequate criterion for
optimal answers must pick out a non–trivial partial answer. Hence, if a measure
of relevance is empirically adequate, then there are examples where it must
choose non–trivial partial answers. But then there must also be an example
where it chooses a misleading answer.

This shows that no decision theoretically defined non–argumentative mea-
sure of relevance can be adequate for all support problems. What about ar-
gumentative measures as that proposed by Merin? The following proposition
shows that there are argumentative decision functions that always select optimal
answers we can presuppose a function that provides for each support problem
S a suitable hypothesis HS for which E has to argue.

Proposition 5.5 Let S and D be defined as in Cor. 5.4, and assume that the
previous conditions for construction best answer functions are fulfilled. Then
there exists a function H : S −→ P(Ω), S 7→ HS and a function R such that
for all S ∈ S R(DS , AdmS ,HS) ∈ OpS.

Proof: Let S = 〈Ω, PE , PI ,A, u〉 be a given support problem. Let BA :
S −→ P(Ω) be such that for all S ∈ S BA(S) ∈ OpS , i.e. BA is a best answer
decision function. Then we simply set HS := BA(S) and R(DS , AdmS ,HS) =
HS . Clearly, this decision function has the desired properties.

For us the main importance of this proposition lies in the fact that it makes
absolutely clear the relation between our game theoretic model of questioning
and answering and explanations based on decision theory. The latter need an
externally given hypothesis as a goal for which an interlocutor could argue. In
our model, this hypothesis is provided theory internally. But this remains the
‘only’ difference between the two approaches. Hence, the proposition provides
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for us a bridge to applications of pure decision theory. In the previous sections
we have emphasised the differences and, of course, the weaknesses and short-
comings. This obscures somewhat the sheer usefulness of this apparatus. In all
cases where we don’t need to bother about the argumentative goal, a decision
theoretic criterion of relevance may be completely adequate.

From Corollary 5.4 we know that a non–argumentative decision function
cannot guarantee that we always select optimal answers. Proposition 5.5 seems
to show that the argumentative conception of communication builds the proper
basis for an explication of relevance. Whether it really warrants this conclusion,
we have to investigate another time. We leave it at this point.

The same holds for the question concerning the wider significance of our
results for Relevance Theory. Sperber & Wilson (1986) are well known for their
claim that the Gricean maxims can be reduced to the Maxim of Relevance. If our
arguments that applied to decision theoretic explications carry over to Relevance
theoretic explications, then the consequences are indeed far reaching. They
would amount to a proof that no such reductionist approach can be empirically
adequate. But whether or not this conclusion is warranted or not must again
be left for future research.

6 Conclusion

We set out with the aim to derive a measure of utility of answers from a game
theoretic model of communication that accounts for a number of judgements
about the appropriateness of partial and mention–some answers. In general, we
looked at communication as a sequential two–person game of complete coordi-
nation. We presented a sketch how to explain the existence of mention–some
answers even if one assumes that the basic answer to a question is the strongly
exhaustive answer. We argued that mention–some answers contribute to goals
of the inquirer that are super–ordinated to the immediate goal of getting an
answer to their question. Relative to these super–ordinated goals they provide
optimal information. The set of best answers can be calculated by backward
induction. We applied our model to a number of examples. A sub–group of
partial answers, which we called non–trivial partial answers, turned out to be
especially interesting; they make it necessary for the answering person to take
into account the possibility of misleading information. We showed in the sec-
ond part of the paper that our model improved here over previous explanations
based on decision theoretically formulated relevance measures. The main goal
of the second part was to provide a principled characterisation of the relation
between our game theoretic model and approaches that use a decision theoret-
ically defined measure of relevance for finding optimal answers. They define
relevance from the perspective of the receiver of information. Choosing maxi-
mally relevant answers then means trying to maximise his expectations about
responses. As is to be expected, this runs the risk of providing misleading in-
formation. We found that no decision function based on maximal relevance can
be successful in avoiding this risk.

This brings us to the final question: What conclusions does our analysis allow
about the status of Gricean maxims? Our model incorporated the Cooperation
Principle and the Maxim of Quality, which principles were supplemented by
the assumption (Utility) that interlocutors are Bayesian utility maximisers, i.e.
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choose actions that maximise expected utilities. It is clear, that we needed in
addition the Maxim of Manner in order to rule out overly complex answers. As
we provided here only a case study, we can formulate only tentative conjectures
about the other maxims:

Conjecture 1: The Maxim of Relevance is not among the basic axioms of
pragmatics.

Conjecture 2: The first sub–maxim of Quantity (Say as much as you can) is
superfluous — as a consequence of (Utility).

Previously, we wrote that the more general question behind our discussion of
explications of relevance is the question whether or not it is essential to model
communication as a two–person game. I hope, it could show that it is.
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