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Abstract

To determine what the speaker in a cooperative dialog meant with his assertion,
on top of what he explicitly said, it is crucial that we assume that the assertion
he gave was optimal. In determining optimal assertions we assume that dia-
logues are embedded in decision problems (van Rooij, 2003) and use backward
induction for calculating them (Benz, 2006). In this paper we show that in terms
of our framework we can account for several types of implicatures in a uniform
way, suggesting that there is no need for an independent linguistic theory of
generalized implicatures. In the final section we show how we can embed our
theory in the framework of signaling games, and how it relates with other game
theoretic analyses of implicatures.

1 Introduction

The study of language is traditionally divided into three domains: syntax, seman-
tics, and pragmatics. Syntax is the study of expressions independent on what they
mean, while semantics studies the conventional meaning of these expressions. This
paper is in the realm of pragmatics, which studies the interpretation of expressions
in the particular context in which they are used. Perhaps the most important no-
tion in linguistic pragmatics is Grice’s (1967) notion of conversational implicature. It
is based on the insight that by means of general principles of rational cooperative
communication we can communicate more with the use of a sentence than the con-
ventional semantic meaning associated with it. What is communicated by the use of
an expression/sentence depends not only on syntactic and semantic rules, but also on
some basic assumptions about the rational nature of conversational activity and the
preferences and expectations of the agents involved. In general, the interpretation of
an utterance depends on what the speaker expects the hearer will understand, which
in turn depends, in a circular way, on what the listener thinks that the speaker has in
mind. Thus, communication requires coordination between speaker and hearer which
involves interactive reasoning. As game theory is the general study of interactive rea-
soning, it is only natural to assume – following Lewis’ (1969) game theoretic analysis
of conventional meaning – that conversational implicatures should be accounted for
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Benthem, Bart Geurts, Wilfrid Hodges, Samson de Jager, Kris Jaegher, and especially Michael
Franke and the reviewers for discussion, comments, and suggestions.
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by making use of game theoretic tools. Indeed, in this paper we will propose that
a conversational implicature results from an equilibrium outcome of a conversational
game between speaker and hearer.

The game theoretic view of implicatures we would like to put forward differs
remarkably from the standard analysis associated most with authors like Gazdar,
Horn, and Levinson. According to the standard analysis, conversational implicatures
depend very directly on the Gricean maxims of conversation – the maxims of quality,
quantity, relevance, and manner – that specify what participants have to do in order
to satisfy Grice’s cooperative principle. Over the years many phenomena have been
explained in terms of the Gricean maxims of conversation. These maxims – best
thought of as some rules of thumb – are stated in a very informal way, but most work
in formal pragmatics concentrated itself on Grice’s two submaxims of quantity.

1. Make your contribution as informative as is required
(for the current purposes of the exchange).

2. Do not make your contribution more informative than is required.

Gricean implicatures based on the first submaxim (sometimes called Q1-implicatures)
are typically analyzed as a rule of negation as failure in the message: from the fact that
the speaker didn’t say A for a certain class of propositions A, the interpreter infers
¬A (or at least that the speaker doesn’t know A). Scalar implicatures as discussed
by Horn (1972), Gazdar (1979) and others, from, for instance, ‘A ∨ B’ and ‘John
has two children’ to ‘not (A ∧ B)’ and ‘John doesn’t have more than two children’,
respectively, are the best known implicatures of this kind.

The second submaxim of quantity is seen as the driving force behind other kinds
of pragmatic inferences: those to the most stereotypical interpretation. For example,
that we normally interpret ‘John killed his secretary’ as meaning that John murdered
his secretary in a stereotypical way, i.e. on purpose and by knife or pistol. For obvious
reasons, we will call the latter class of inferences Q2-implicatures.1

A third type of implicature is normally related to Grice’s maxim of Manner: “Be
perspicuous”. More specifically, to his first submaxim “avoid obscurity of expression”
and his fourth “avoid prolixity”. The idea is that because unmarked expressions
give rise to stereotypical interpretations via Q2-implicatures, if a marked expression
is used it is suggested that the stereotypical interpretation should be avoided. For
that reason it is argued that the complex ‘John caused his secretary to die’ rules out
that John simply shot his secretary, and suggests that the latter died by an overdose
of (secretary) work. The inference from marked expressions to marked meanings is
sometimes called an M -implicature (Levinson, 2000), and the dual pattern described
by Q2 and M -implicatures is dubbed by Horn (1984) as the division of pragmatic
labor.

According to the standard analysis, the three types of implicatures mentioned
above are thought of as generalized conversational implicatures (GCIs) triggered by
specific lexical items. For Q1-implicatures this means that if the two lexical expres-
sions S(trong) and W (eak) form a scale, 〈S, W〉, a (non-complex) sentence in which
the weaker expression W occurs will always trigger the implicature that the corre-
sponding stronger sentence where S is substituted for W is not true. In some contexts,
however, this will give rise to wrong predictions. This problem is standardly discussed

1What we denote by Q2-implicatures are called R-implicatures by Horn (1984), and I-implicatures
by Levinson (2000).
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for numeral expressions. Based on the assumption that numerals get an at least in-
terpretation, Horn (1972) assumes that they form scales like 〈..., four, three, two, ...〉.
However, the existence of such a scale would falsely predict that A’s answer to Q’s
question implicates that John doesn’t have more than two children (cf. Kempson,
1986).

(1) Q: Who has two children? A: John has two children.

The at least interpretation of numerals has been widely disputed (e.g. Carston,
1998), however. But the phenomenon is not restricted to numerals. Due to the
〈and, or〉 scale, it is standardly assumed that (2b) is a Q1-implicature of (2a):

(2) a. John or Mary came to the party.

b. John or Mary came to the party, but not both.

However, this inference is not always allowed. In particular this is not the case when
(2a) is given as an affirmative answer to the following yes/no-question:

(3) Did (at least) John or Mary came to the party?

These examples seem to suggest that Q1-implicatures are, after all, dependent on
the conversational situation, in particular, on the question being asked.

Proponents of generalized conversational implicatures argue that at least for (1)
and (2a), in such particular conversational situations, the generalized conversational
implicatures that John does not have have more than two children and (2b), that
John and Mary didn’t come both, are cancelled for reasons of relevance: the semantic
meanings of the answers are already informative enough for the purpose of the conver-
sation. Thus, it is claimed by Gazdar, Horn, and Levinson that Q1-implicatures are
a kind of default inferences: always triggered, but possibly cancelled. But this makes
one suspicious: why should we even trigger implicatures for reasons of informativity
to be cancelled later for reasons of relevance? Everything else being equal, wouldn’t
it be preferred to have a theory that can do without cancelation and make the trig-
gering of implicatures dependent on what is known and at stake in the context of
use? Grice (1967) called implicatures that crucially depend on context particularized
conversational ones. The view that Q1-implicatures depend on what is known and
taken to be relevant by speaker and hearer is known as the Context-Driven view of
Q1-implicatures.2

Both the standard analysis and the Context-Driven view can account for the fact
that in (1), and (2a) in the context of question (3), the Q1-implicature does not
arise. However, the different accounts predict different psychological reasonings being
involved. Recently, a number of people tried to decide between the two contrasting
approaches of Q1-implicatures by looking at this psychological reasoning.

Psycholinguistic evidence of at least two different types suggests – though cer-
tainly not conclusively3 – that Q1-implicatures should not be accounted for as de-
fault inferences as proposed by Gazdar, Horn, Levinson, and others. The first type
of evidence is that children below age four don’t infer standard scalar implicatures
(cf. Noveck, 2001; Papafragou & Mussolino, 2003). Noveck (2001), for instance finds

2Proponents of the Context-Driven view of Q1-implicatures include Hirschberg (1985), Carston
(1998), and Van Rooij & Schulz (2004).

3See Chierchia et al (2001) and Storto & Tannenhaus (2004) for (very) different opinions.
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that in contrast to adults, children treat ‘Some elephants have trunks’ as not being
false or misleading if all (shown) elephants have trumps. This evidence is taken to
be in favor of the Context-Driven view of Q1-implicatures, because other well-known
experiments (such as ‘False belief’-tasks) strongly suggest that such children do not
yet have standard folk-psychological abilities, which are exactly the abilities needed
to account for the implicature according to proponents of the Context-Driven view.

The first type of evidence in favor of Q1-implicatures as particularized ones is
very indirect. Recently, several people provided more direct psychological evidence
in favor of the Context-Driven view. Recall that in contrast to the Context-Driven
view, the standard analysis predict that in (1), for example, a (potential) implicature
is triggered that has to be cancelled later. This indicates that the two analyses predict
a difference in reading time for the trigger phrase: the standard analysis predicts that
in the context of question (3) the reading time of (2a) takes longer than when the
latter was uttered in the context of the question what was in the box. Looking at the
reading times of expressions in different types of contexts, Noveck & Posada (2003),
Bott & Noveck (2004), and Breheny, Katsos & Williams (2006) consistently find that
they confirm the Context-Driven view.

According to Horn (1984) and Levinson (2000), also Q2-implicatures are general-
ized ones. The idea is that the semantic meaning of a sentences like ‘John killed his
secretary’ leaves open how John killed his secretary, and whether it was on purpose
or not. This should be inferred from contextual, or world knowledge. This sounds
all very natural, but why should it be a generalized implicature, instead of a par-
ticularized one?4 Because what counts as stereotypical killing depends on time and
place (compare the Wild-West with Italy during the Roman Empire), it seems most
natural to assume that a Q2-implicature depends on the common (though perhaps
very idiosyncratic) background assumptions of speaker and hearer. But this suggests
that one should also treat inferences to stereotypical interpretations as particularized
conversational implicatures. This reasoning caries over to M -implicatures, because
they depend on what is mutually understood to be stereotypical as well.

We have argued against the assumption that standard pragmatic inferences should
be treated as rule-governed, generalized conversational implicatures. Instead, Q1, Q2,
and M -implicatures should all be treated as particularized conversational implica-
tures, dependent on the preferences and beliefs speaker and hearer have in the par-
ticular conversational context. This suggest (i) that all these implicatures should be
accounted for similarly, but also (ii) that they have a lot in common with the pro-
totypical particularized conversational implicatures: the ones dependent on Grice’s
maxim of Relevance: the requirement of the speaker to be relevant. In the following
section we will use decision theory to define a precise notion of relevance, and see
how we can use it to account for some implicatures. Although the analysis is quite
successful to account for standard Q1-implicatures, and some relevance implicatures,
the proposed analysis is not general enough to account for all relevance implicatures
and fails to account for Q2-implicatures. Afterwards, we will provide a more gen-
eral game theoretic analysis of conversational implicatures which is independent of
Grice’s specific maxims, and show by example how it can treat successfully all types
of implicatures mentioned in this introduction.

4See also Geurts (1998).
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2 Maximizing relevance

The standard analysis of Q1-implicatures assumes that the speaker says as most as
he can. The hearer can conclude from this that all those alternative expressions that
the speaker could have used can be taken to be false if they are more informative. It
is very straightforward to account for this type of pragmatic inference by means of
the following pragmatic interpretation rule:

Prag1(f) = {w ∈ [[f ]]|∀f ′ ∈ Alt(f) : w ∈ [[f ′]] → f |= f ′}. (2.1)

In this rule, Alt(f) denotes the set of alternative expressions to f that the speaker
could have used, [[ · ]] is a function which assigns to each expression f its semantic
interpretation [[f ]], a set of worlds, while f |= f ′ denotes the fact that f entails f ′

(meaning that [[f ]] ⊆ [[f ′]]). Obviously, if the speaker asserts ‘A ∨ B’, the hearer can
conclude via the pragmatic interpretation rule Prag1 that the stronger ‘A∧B’ is false
(if ‘A ∧B’ is taken to be an alternative to ‘A ∨B’).

Although Prag1 accounts for a wide range of conversational implicatures due to
Grice’s first submaxim of Quantity, there are quite a number of shortcomings of this
interpretation rule. For instance, it puts heavy constraints on the alternative expres-
sions (for ‘A∨B’ to be interpretable at all, ‘A’ is not allowed to be an alternative), and
it assumes the speaker to be knowledgeable about which of the alternative expressions
are true. But even if we ignore these problems, the above pragmatic interpretation
rule has an obvious shortcoming: it ignores the purpose of the conversation. This
shortcoming can be illustrated by the following standard conversation taking place at
the Damrak in Amsterdam between Italian tourist Ann and Dutchman Bob:

(4) Ann: Where can I buy Italian wine?
Bob: At the central station. (f1) / At the Bijenkorf. (f2)
Bob: At the central station and at the Bijenkorf. (f1 ∧ f2)

Intuitively, Bob’s answer f1 does not rule out that one can also buy Italian wine at
other places in Amsterdam, for instance at the Bijenkorf. However, if we take ‘At
the central station and at the Bijenkorf’ (‘f1 ∧ f2’) to be an alternative to Bob’s
answer, interpreting by Prag1 wrongly predicts that one cannot buy Italian wine at
the Bijenkorf. Arguably, what is ignored by Prag1 is Ann’s purpose of asking the
question: Ann wants to buy a bottle of Italian wine, and she just needs to know some
place where one can be bought (Bob’s answer is known as a ‘mention-some’ answer).
Knowing all places in Amsterdam is irrelevant to this goal.

A natural way to improve on interpretation rule Prag1 – and in line with Grice’s
rider to his first submaxim of Quantity – is to assume that the speaker said as much
as possible as far as this is relevant to the hearer. In order to make this suggestion
more precise, it has been proposed (Parikh, 2001; Van Rooij, 2003) that the relevance
of a proposition is defined in terms of the extent to which it solves the hearer’s
decision problem. We will first discuss what a decision problem is and one simple
way to define a relevance ordering between propositions making use of such a decision
problem. Afterwards, we suggest how one can account for the mention-some answers.

Let Ω be the set of all possible states of the worlds. For simplicity we restrict
our attention to situations with countable many possibilities, i.e. to countable Ωs.
We represent an agent’s expectations about the world by a probability distribution
over Ω, i.e. a real valued function P : Ω −→ R with the following properties: (1)
P (v) ≥ 0 for all v ∈ Ω and (2) the sum of all P (v) equals 1. For sets A ⊆ Ω we
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set P (A) =
∑

v∈A P (v). Hence P (Ω) = 1. We represent an agent’s preferences over
outcomes of actions by a real valued utility function over action–world pairs. We
collect these elements in the following structure:

Definition 2.1 A decision problem is a triple 〈(Ω, P ),A, U〉 such that (Ω, P ) is a
countable probability space, A a finite, non–empty set and U : A × Ω −→ R a
function. A is called the action set, and its elements actions. U is called a payoff or
utility function.

Let us now assume that our agent, Ann, faces a decision problem, i.e. she wonders
which of the alternative actions in A she should choose. It is standard to assume
that rational agents try to maximize their expected utilities. The expected utility of
an action a is defined by:

EU(a) =
∑
v∈Ω

P (v)× U(a, v). (2.2)

The expected utility of performing an action might change if our agent Ann learns
new information. To determine this change of expected utility, we first have to know
how learning new information will effect Ann’s beliefs. In probability theory the effect
of learning a proposition A is modeled by conditional probabilities. Let H be any
proposition, e.g. the proposition that one sells Italian wine at the station. H collects
all possible worlds in Ω where this sentence is true. Let C be some other proposition,
e.g. the answer given by Bob. Then, the probability of H given C, written P (H|C),
is defined by:

P (H|C) := P (H ∩ C)/P (C). (2.3)

This is only well–defined if P (C) 6= 0. In terms of this conditional probability function,
we can now define the expected utility of action a after learning C by:5

EU(a|C) =
∑
v∈Ω

P (v|C)× U(a, v). (2.4)

In terms of this notion, we can determine the utility value of the information C,
UV (C), as follows:

UV (C) = maxiEU(ai|C). (2.5)

Now that we know how to determine the utility of a proposition (for a hearer) we
can define a relevance ordering on these propositions in terms of their utility values:
A ≥R B iff UV (A) ≥ UV (B). Because each expression denotes a unique proposition,
the ordering relation can be extended to expressions: f ≥R f ′ iff [[f ]] ≥R [[f ′]].

Now one might propose that the speaker should assert something true that has
the highest utility value. This would mean that if F is the set of alternative assertions
the speaker could make, and we assume that Ann faces a mutually known decision
problem, f should pragmatically be interpreted as follows:

Prag2(f) = {w ∈ [[f ]]|∀f ′ ∈ F : w ∈ [[f ′]] → f ≥R f ′}. (2.6)

Notice that if F = Alt(f), Prag2(f) is just like Prag1(f) except that entailment is
replaced by ≥R.

5Where P (v|C) is short for P ({v}|C).

6



To illustrate how Prag2 works for our above mention-some example, suppose that
we have four relevant worlds, Ω = {w0, w1, w2, w3}, where the three assertions: f1, f2,
and f1 ∧ f2 have the following semantic meanings: [[f1]] = {w1, w3}, [[f2]] = {w2, w3},
and [[f1 ∧ f2]] = {w3}. Suppose that the decision problem contains only two actions:
a, the action of walking to the central station, and b, the action of walking to the
Bijenkorf, and that the utility function is defined as follows: ∀w ∈ Ω : U(a,w) = 1
if w ∈ [[f1]], 0 otherwise, and U(b, w) = 1, if w ∈ [[f2]], 0 otherwise. If we assume
for simplicity that P (X) = |X|

|Ω| = |X|
4 , for X ⊆ Ω, it follows that EU(a|[[f1]]) =

(( 1
2 × U(a,w1)) + ( 1

2 × U(a,w3))) = 1 = EU(a|[[f1 ∧ f2]]) = U(a,w3), and thus
that UV ([[f1]]) = UV ([[f1 ∧ f2]]) = 1. But this means that even though f1 ∧ f2 is
more informative than f1, it is not more relevant, or useful. Hence, if we interpret
f1 pragmatically by Prag2, one cannot conclude anymore from f1 that the stronger
f1 ∧ f2 is false.

Unfortunately, there are a number of implicatures we cannot account for in terms
of relevance maximization, i.e., interpretation rule Prag2. First of all, it’s unclear
how Q2-implicatures should be treated. More disturbingly, perhaps, it doesn’t predict
correctly in case of the implicature explicitly discussed by Grice (1989) in his William
James lectures. In this example, Ann is standing by an obviously immobilized car
and is approached by Bob, after which the following exchange takes place

(5) Ann: I am out of petrol.
Bob: There is a garage round the corner. (G)
+> there is petrol available at the garage (H)

Grice notes that because Bob’s remark can only be relevant in case the garage is open,
H, Ann can conclude that this is something conversationally implicated by Bob.
As suggested above, this is not predicted by interpretation rule Prag2. Relevance
maximization predicts that everything is false what would have been more relevant
and was not explicitly stated. H was not stated and would have been relevant, hence
it is predicted to be false by the pragmatic interpretation rule Prag2. What is wrong,
or so we will argue, is that we should not (just) look at maximizing utility from the
hearer’s point of view, but (also) from the perspective of the speaker: what counts is
the speaker’s utility of the action chosen by the hearer after she updated her beliefs
with the semantic meaning of the answer. To account for this, we will make use to
game theory.

3 A game theoretic analysis

3.1 Representing the situation

In the previous section we have referred to Ann’s decision problem to determine
the relevance of new information, and tried to calculate the ‘pragmatic’ meaning of
the answer in terms of that. Unfortunately, we saw that this sometimes gives rise
to wrong predictions. In this section we will argue that to solve this problem, we
should embed Ann’s decision problem into a larger interactive setting that involves
not only a decision problem of Ann, but also one of Bob. Bob’s decision problem
is the problem which answer he should provide such that Ann chooses the optimal
action. We will argue that Ann can figure out what is conversationally implicated by
the answer, or more generally by Bob’s assertion, if she assumes that Bob gave the
answer which gives the highest expected utility to himself. But for Bob to calculate
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his expected utility of an answer, he has to make certain assumptions about how Ann
will (initially) update her beliefs as a response to the answer. The crucial proposal
we will make in this paper (following Benz, 2006), is that this initial update depends
only on the semantic meaning of the answer. In this section we (slightly) extend
Benz’s (2006) analysis and show how to represent dialogues as two person games with
complete coordination, and demonstrate how speaker Bob can determine what is the
optimal answers/assertions by means of backwards induction. Afterwards, we show
how – or under which circumstances – this predicts the intuitively correct implicatures
triggered by assertions.

Instead of Ann and Bob, we will in this section talk about the inquirer, I, and
the answering expert, E. The inquirer has a decision problem, 〈(Ω, PI),A, UI〉 and
we will assume for simplicity that this problem is common knowledge after she asked
her question. In order to get a model for the questioning and answering situation
we have to add a representation for the answering expert’s situation. We only add a
probability distribution PE that represents his expectations about the world:

Definition 3.1 A support problem is an eight–tuple 〈Ω, PE , PI , F,A, UE , UI , [[ · ]]〉
such that (Ω, PE) and (Ω, PI) are countable probability spaces, [[ · ]] is the semantic
interpretation function, and 〈(Ω, PI),A, UI〉 and 〈(Ω, PE), F, UE〉 are decision prob-
lems.6In contrast to UI , UE will depend also on the message being used. We define
UE(f, a, w) as UI(a,w)− C(f), where C(f) measures the cost of sending f . We call
a support problem well–behaved if (1) for all f ∈ F : PI([[f ]]) = 1 ⇒ PE([[f ]]) = 1
and (2) for x = I, E and all a ∈ A :

∑
v∈Ω Px(v)× Ux(·, a, v) < ∞.

As far as cost function C is concerned, we follow Blume, Kim & Sobel (1993) and
assume that either C(f) = 0, or C(f) is nominal, i.e. small relative to other payoffs.
The first condition for well–behavedness is included in order to make sure that E’s
answers cannot contradict I’s beliefs. It implies that for any f ∈ F and set B ⊆ Ω:
PE([[f ]]) = 1 ⇒ PI([[f ]]) > 0 and PI([[f ]]|B) = 1 & PE(B) = 1 ⇒ PE([[f ]]) = 1. The
second condition in the definition is there in order to keep the mathematics simple.

A support problem represents just the fixed static parameters of the answering
situation. A crucial assumption we make is that I’s decision does not depend on
what she believes that E believes.7 Hence her epistemic state (Ω, PI) represents just
her expectations about the actual world. E’s task is to provide information that is
optimally suited to support I in her decision problem. Hence, E faces a decision
problem himself, where his actions are the possible answers. The utilities of the
answers depend on how they influence I’s final choice. We look at the dependencies
in more detail. We find two successive decision problems:

Expert E I decides Evaluation
answers for action

↓ ↓ ↓

•
f

−−→ •
a

−−→ •
↑ ↑ ↑

expectations expectations utility
of E of I functions

(Ω, PE) (Ω, PI) UE(f, a, v) and UI(a, v)
6We leave it underdetermined here, but the set F should most naturally be thought of as the set

of alternative answers to the question ‘corresponding’ to I’s decision problem.
7The rest of this paper can be seen as further discussion and motivation of this seemingly non-

game theoretic assumption.
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We assume that the answering expert E is fully cooperative and wants to max-
imize I’s final success. If we ignore E’s costs of sending the messages, E’s payoff is
identical with I’s (our representation of the Cooperative Principle). E has to choose
his answer in such a way that it optimally contributes towards I’s decision. Due to
our assumption that I’s information is mutually known, E is able to calculate how I
will decide. Hence, we represent the decision process as a sequential two-person game
with (almost) complete coordination of preferences. We find a solution, i.e. optimal
assertions and choices of actions by calculating backwards from the final outcomes.8

The following model will be worked out concentrating on ideal dialogues.

3.2 Calculating optimal answers by backwards induction

I’s decision situation First we have to consider the final decision problem of I.
In the previous section we have determined the expected utility after learning f by:

EUI(a, f) = EUI(a|[[f ]]) =
∑
v∈Ω

P (v|[[f ]])× UI(a, v).

If the decision maker I tries to maximize expected utilities by her choice, it fol-
lows that she will only choose actions that belong to argmaxaEU(a, f) = {a ∈
A | EUI(a, f) is maximal}. Sometimes we assume in addition that I has always a
preference for one action over the other, or that there is a mutually known rule that
tells I which action to choose if this set has more than one element. In this case we
can write af for this unique element. In short, we assume that the function f 7→ af ,
for PI([[f ]]) > 0, is known to E.

E’s decision situation According to our assumption, questioning and answering
is a game of (almost) complete coordination (Principle of Cooperation). We have
implemented this assumption by taking E’s utility function UE to be identical with
I’s utility function UI minus the nominal cost of sending the message. We use a slight
variant of definition (2.2) for calculating the expected utility of an answer f ∈ F . With
af as defined above we define:

EUE(f) :=
∑
v∈Ω

PE(v)× UE(f, af , v). (3.7)

Notice that on our assumption that C(f) is at most nominal, in order to maximize
his own benefit, E has to choose an answer such that it induces I to take an action
that maximizes their common payoff. We add here a further Gricean maxim, the
Maxim of Quality. We call an answer f admissible if PE([[f ]]) = 1. The Maxim of
Quality is represented by the assumption that the expert E does only give admissible
answers. This means that he believes them to be true. For a support problem σ =
〈Ω, PE , PI , F,A, UI , UE , [[ · ]]〉 we set:

Admσ := {f ∈ F : PE([[f ]]) = 1}. (3.8)

Hence, the set of optimal answers for σ is given by the set of admissible answers that
have the highest expected utility:

Opσ = {f ∈ Admσ | ∀f ′ ∈ Admσ : EUE(f) ≥ EUE(f ′)}. (3.9)
8Strictly speaking, backwards induction is not allowed in the type of game-theoretical situation

as we described above. But on our assumption of how I behaves, backwards induction is ok.
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Assuming that the expert is making an optimal assertion, the inquirer can conclude
from E’s assertion f that she is in a support problem σ where it holds that f ∈ Opσ.
Because, by assumption, she knows already E’s utility function, I can learn a lot
about the information E has about the actual world.

Let us assume that E knows for sure which action a ∈ A is optimal. This means
that there must be some action a such that a is optimal in all worlds which are possible
to E. Let O(a) denote the set of worlds where action a has highest utility for E and
I (remember that the cost of messages is at most nominal):

O(a) = {w ∈ Ω | ∀b ∈ A : UE(·, a, w) ≥ UE(·, b, w)}. (3.10)

For E to know which action is optimal, it has to be the case that there is an action
a such that he assigns to proposition O(a) probability 1:

∃a ∈ A : PE(O(a)) = 1. (3.11)

Let’s assume that E asserted f , and that this assertion was actually optimal for E,
and by I assumed to be optimal, i.e. that f ∈ Opσ. Thus,

PE([[f ]]) = 1 ∧ ∀f ′ : (PE([[f ′]]) = 1 → EUE(f) ≥ EUE(f ′)). (3.12)

It follows with (3.11) and (3.12) that E knows to be in a world where af is the action,
or one of the actions, which has the highest utility:

PE(O(af )) = 1. (3.13)

From this I can infer that the actual world w is such a world as well:

w ∈ O(af ). (3.14)

Interesting about this inference is that although E determines via backwards in-
duction what he should assert by making use of naive Bayesian updating on the
inquirer’s side, E in fact realizes that on the basis of this assumption I will update
her beliefs via a more sophisticated method than conditionalization. We will see next
that in this way we predict mention-some readings of answers and Grice’s relevance
implicature in the circumstances described in section 2.

3.3 Mention-some answers and Relevance implicatures

Let us consider the mention-some question in (4) again in the situation as described
in section 2.

(6) I: Where can I buy Italian wine?

E: At the central station. (f1) / At the Bijenkorf. (f2)

E: At the central station and at the Bijenkorf. (f1 ∧ f2)

Recall that the answers (f1) and (f2) are called mention–some answers. The
answer (f1 ∧ f2) is more informative than both of these.

Let us denote by a and b the actions of going to the station and going to the
Bijenkorf, respectively. There may be other actions too. Let [[f ]] ⊆ Ω be the set of
worlds where one can buy Italian wine at the station, and [[f2]] ⊆ Ω where one can
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buy Italian wine at the Bijenkorf. For every possible action c ∈ A the utility value
is either 1 (success) or 0 (failure); especially we assume that UI(a, v) = 1 iff v ∈ [[f ]],
else UI(a, v) = 0; UI(b, v) = 1 iff v ∈ [[f2]], else UI(b, v) = 0.

In section 2 we showed already by way of an example that UVI([[f1]]) = 1 =
UVI([[f1 ∧ f2]]) and it similarly holds that UVI([[f2]]) = 1 = UVI([[f1 ∧ f2]]). This
shows that for the inquirer it doesn’t matter which information she receives, as long
as it is true. Thus, all the answers are equally useful with respect to the conveyed
information and the inquirer’s goals. What we have to show now, however, is that all
answers are equally optimal for the answering expert. We will show that EUE(f1) =
EUE(f2) = EUE(f1 ∧ f2) = 1 if f1, f2 and f1 ∧ f2 are admissible answers, and thus
known to be true by the expert.

We start with answer f1: If E knows that f1 is true, then f1 is an optimal answer.
We assume that f1 is a costless message, meaning that UE(f1, af1 , v) = UI(af1 , v) for
all v ∈ Ω. If learning [[f1]] induces I to choose action a, i.e. if af1 = a = going to the
central station, then the proof is very simple:

EUE(f1) =
∑
v∈Ω

PE(v)× UE(f1, af1 , v) =
∑

v∈[[f1]]

PE(v)× UI(a, v) = 1.

Clearly, no other answer could yield a higher payoff. If we want to prove the claim
in full generality, i.e. for all cases, may they be as complicated as they can be
as long as our previously formulated restrictions hold, then we need some more
calculation. We first note the following fact: Let’s assume that I chooses after
learning [[f1]] an act c different from a, i.e. af1 = c 6= a. Then let C denote
the set where action c is successful, i.e. C = {v ∈ Ω | UI(c, v) = 1}. Then ei-
ther (i) PE(C) = 1 or (ii) PE(C) < 1. In the first case (i) it follows again that
EUE(f1) =

∑
v∈Ω PE(v) × UE(f1, c, v) = 1, and our claim is proven. Case (ii) leads

to a contradiction by the well–behavedness condition in Definition 3.1: If I chooses c,
then EUI(c|[[f1]]) = maxc′∈A EUI(c′|[[f1]]) = EUI(a|[[f1]]) = 1; hence PI(C|[[f1]]) = 1,
and therefore PE(C) = 1 by well-behavedness, in contradiction to (ii). It follows that
only (i) is possible.

In the same way it follows that f2 is optimal if E knows that f2. If all messages are
costless, the same result follows for any stronger answer, including f1 ∧ f2, f1 ∧ ¬f2,
or ¬f1 ∧ f2. This shows that their expected utilities are all equal as long as they
are admissible answers. Hence, all these answers are equally good and E can freely
choose between them. But this means that the pragmatic interpretation of f1 is the
same as its semantic meaning, and thus that it will receive a mention-some reading.
Notice that if C(f1∧¬f2) > C(f1), asserting f1 would be more optimal than asserting
f1 ∧ ¬f2, even if the latter statement is true and more informative. This reasoning
very much satisfies Grice’s second submaxim of Quantity as discussed in section 1.

We have seen in section 2 that we can already predict that f1 receives a mention-
some reading by interpretation rule Prag2, but that this rule makes the wrong pre-
diction for Grice’s (1967) example repeated below:

(7) A: I am out of petrol.

B: There is a garage around the corner. (G)

Again, Grice suggests that because B’s remark can only be relevant in case the
garage is open, H = {w2}, A can conclude that this is something conversationally
implicated by B. Let us assume that a denotes the action of having a look around the
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corner, while b denotes the action of doing nothing. We assume here that going to the
garage without getting petrol is more costly than doing nothing in world w1 where
the garage doesn’t have petrol. This can be represented by e.g. the following payoff
function: UI(a,w1) = −1 and UI(a,w2) = 10 and UI(b, w1) = UI(b, w2) = 0. We
assume that I’s expectations are such that learning that (G) that there is a garage
around the corner will induce her to do a.9 From this it follows that the real world w
must be such that UI(a,w) ≥ UI(b, w). This can only be the case if w = w2. Hence,
the fact that G has been answered implies that the garage is open and offers petrol.

4 The standard implicatures

4.1 Calculating implicatures

We have argued that an informed speaker, i.e. the expert, can and should use back-
wards induction to determine which answer he should give. Notice that by our use
of backwards induction, the informed speaker assumes that I will perform that act
which has the highest expected utility after she has updated her beliefs by standard
Bayesian conditionalization with the semantic meaning of the answer. This doesn’t
mean, however, that the hearer I just interprets the answer simply at face value: On
the assumption that E is informed of I’s decision problem and chooses his answer by
making use of backwards induction, hearer I can conclude more from the answer than
just its standard semantic meaning. Before we will discuss the interpretation rule that
is associated with the speaker’s rule of backwards induction, let us first discuss some
other, and perhaps simpler, combinations of speaker and hearer strategies.

It is well-known (e.g. Levinson, 2000) that we can look at the Gricean maxims
both from the speaker’s and from the hearer’s perspective. The quality maxim, for
instance, can be thought of as a requirement for the speaker to speak the truth, and if
the maxim is obeyed the hearer can conclude that what the speaker says is (believed
to be) true. The same is true for the first sub-maxim of quantity, which basically
demands speakers to provide all information they know as far as this is relevant to
the current topic of conversation. If it is known that the speaker obeys this maxim,
the hearer can conclude something on top of what is explicitly said by the speaker.

Let us now return to the case where the speaker, or expert, determines what to
say by means of backwards induction. We can think of a speaker’s strategy as a rule
that determines for each support problem what the speaker should say. In this case
it is the function that says that E should utter f , if the action which has the highest
expected utility for I after she learns that f is true is indeed among the best actions
according to E.

In the previous sub-section we saw that an answer/assertion must be an element
of Opσ for any support problem σ = 〈Ω, PE , PI , F,A, UE , UI , [[ · ]]〉. But this means
that hearer I can conclude something about the speaker’s E’s decision problem: he
must have been in a decision problem where the answer was an optimal assertion. If
we assume that the alternative actions F that the speaker can perform and his utility
function UE are common knowledge, this means that I can learn something about

9This model may seem to be somewhat artificial. In a realistic model we have to assume that
there are many different places where it might be possible that petrol is available. This means that
I has to choose between a larger number of actions. In such a scenario it becomes very natural to
assume that only learning G will induce her to do a. But in order to keep the model simple, we
consider only a situation where I has to choose between doing nothing and go to that specific garage.
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the beliefs of E. Remember that if E answered f , then the inquirer I knows that E′s
answer is optimal, i.e. that f ∈ Opσ, hence that:

PE([[f ]]) = 1 ∧ ∀f ′ ∈ F : (PE([[f ′]]) = 1 → EUE(f) ≥ EUE(f ′)).

If we assume that it is common knowledge between E and I that E has complete
knowledge of all relevant facts, then it follows that for the actual world w it holds
that PE(w) = 1. In that case, if it is assumed that E makes an optimal assertion,
I can conclude from E’s assertion f that E and I must be in one of the following
worlds:

Prag3(f) = {w ∈ [[f ]]|∀f ′ ∈ Admσ : UE(f, af , w) ≥ UE(f ′, af ′ , w)}. (4.15)

As it turns out, in terms of pragmatic interpretation rule Prag3 we can account
for all the implicatures discussed in the introduction. What we need to assume is that
all that matters for the hearer is to learn what the real world is. To implement this,
we can assume that the set of actions A corresponds 1-1 with the set of worlds, i.e.
that there exists a 1-1 function, τ , between actions and worlds. This means that I’s
utility function is just UI(a,w) = 1 if τ(a) = w, 0 otherwise. But then expected utility
reduces to probability: EUI(a, f) = PI(w|[[f ]]), if w = τ(a), and maximizing expected
utility thus to maximizing probability. Perhaps in contrast to other examples, there
seems no reason for I to prefer world w to world v if both have the same conditional
probability given f . To account for that we assume that af = argmaxaEUI(a, f) is
just the set of maximally likely [[f ]]-worlds: {v ∈ [[f ]] : v ∈ argmaxwPI(w|[[f ]])}.

Let us now assume that it is commonly known that speaker E knows in which
(relevantly different) state he is, and thus that I can, in general, infer from E’s
assertion f that one of the worlds in Prag3(f) is the actual one. Given that af =
argmaxwPI(w|[[f ]]), and assume for simplicity that all messages in F are equally
complex, this suggests that UE(f, af , w) measures the chance that I interprets the
message in the correct way. Because I takes by construction all worlds in af to be
equally likely, UE(f, af , w) reduces to PI(w|af ) = PI(w|argmaxwP (w|[[f ]]). On this
assumption, (4.15) reduces to the following interpretation rule:

Prag3(f) = {w ∈ [[f ]]|∀f ′ ∈ Admσ : PI(w|af ) ≥ PI(w|af ′)}, (4.16)

which, in turn, simplifies to

Prag3(f) = {w ∈ [[f ]]|∀f ′ ∈ F : PI(w|af ) ≥ PI(w|af ′)}. (4.17)

4.2 Quantity1 implicatures

In this section we will argue that the interpretation rule derived in the previous section
immediately accounts for Q1-implicatures if af = [[f ]], for each f ∈ F . Perhaps we
should simply make this assumption, or we can derive it if we assume that all [[f ]]-
worlds are equally likely. In any case, if af = [[f ]], pragmatic interpretation rule
(4.17), and thus (4.15), comes down to the following:10

Prag3(f) = {w ∈ [[f ]]|∀f ′ ∈ F : PI(w|[[f ]]) ≥ PI(w|[[f ′]])}. (4.18)

10This interpretation rule has, in fact, been proposed already by Van Rooij (2004a) in the context
of Bidirectional Optimality Theory. Jäger’s (2006) game theoretic analysis of Q1-implicatures comes
down to this rule as well.
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Notice that this rule has a lot in common with interpretation rule Prag2 discussed
in section 2. The main difference (in case I’s expected utility comes down to her
probability) is that the world w that the speaker knows to be the actual one plays a
crucial role in Prag3, but not in interpretation rule Prag2. And intuitively it should
play a crucial role: the speaker who knows to be in w wants the hearer to reach
that conclusion, which is why this fixed world should play a prominent role in I’s
reasoning.

To illustrate how rule (4.18) accounts for Q1-implicatures, let us look for simplicity
at numerical expressions. Let us assume that Ω = {w1, w2, w3, w4}, where wi is
the world where i children came to the party, and that E can choose between four
messages: F = {‘one’,‘two’,‘three’,‘four’} with their standard neo-Gricean ‘at least’-
interpretations. This means that the meanings of the numeral expressions form an
implication chain: [[‘four’]] ⊂ [[‘three’]] ⊂ [[‘two’]] ⊂ [[‘one’]].11 By Quality, E has to say
something that is true. If the speaker is in world w4 where 4 children came to the
party, he could send all four messages, but if he is in w1, a world where only 1 child
came, he could say only that. What could I conclude from the message if E knows
in which world he is in? The following table will help us to see.

PI(w|[[f ]]) w1 w2 w3 w4

‘one’ 1
4

1
4

1
4

1
4

‘two’ 0 1
3

1
3

1
3

‘three’ 0 0 1
2

1
2

‘four’ 0 0 0 1

From this table we can see that I can conclude via Prag3 that each numerical
expression ‘n’ will pragmatically be strengthened from ‘at least n’ to mean ‘exactly
n’. This is so, because if E would be in a state m > n, there would be an alternative
expression which has a higher utility/probability in that state in the sense that there
is a higher chance that it is interpreted as intended by E.

4.3 Q2-implicatures, and Horn’s division of pragmatic labor

In this section we will show that Prag3 can also account for inferences to stereotypi-
cal interpretation (i.e., Q2-implicatures) and for Horn’s division of pragmatic labor –
according to which an (un)marked expression (morphologically complex and less lex-
icalized) typically gets an (un)marked meaning. To illustrate, consider the following
well-known example.

(8) a. John killed the the secretary.

b. John caused the secretary to die.

We typically interpret the unmarked (8a) as stereotypical killing, i.e., that John
killed the secretary by knife or pistol (a Q2-implicature), while the marked (8b) is
interpreted such that John caused the death of the sheriff in a non-standard way, e.g.

11As noted in the introduction, the assumption that numerical expressions have an ‘at least’
interpretation is highly controversial, and probably even wrong (see also Clark & Grossman, to
appear). For the argument it doesn’t matter much: one could easily think of other examples where
the semantic meanings of the alternative expressions form a linear chain with respect to inference.
The scale 〈and, or〉 would do as well, just as 〈all, most, some〉, if the quantifiers ‘all’ and ‘most’ give
rise to an existential presupposition.
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by overdose of (secretary) work. In this section we will see how we can account for
this pattern in our framework.

First, remember that via the pragmatic interpretation rule Prag3:

Prag3(f) = {w ∈ [[f ]] : ∀f ′ ∈ Admσ : UE(f, af , w) ≥ UE(f ′, af ′ , w)},

and the assumption that I can conclude from the use of cost-free f that the actual
world is one of the most plausible worlds compatible with f : it is an element of af =
argmaxwP (w|[[f ]]). Thus, Prag3(f) = {w ∈ [[f ]]|∀f ′ ∈ F : PI(w|af ) ≥ PI(w|af ′)}.
If in contrast to what we did for Q1-implicatures we now don’t assume, or derive,
that af = [[f ]], this means that we can (almost) immediately infer to a stereotypical
interpretation, also known as a Q2-implicature.12

Making use of the same utility functions, we can also account for M -implicatures:
the fact that marked expressions typically receive a marked interpretation. Suppose
we have 2 (types of) worlds, w1 and w2, and 3 messages, fu, f1 and f2. Assume
that fu has an underspecified meaning, [[fu]] = {w1, w2}, while f1 and f2 have a
specific meaning: [[f1]] = {w1}, and [[f2]] = {w2}. Let us assume, moreover, that
PI(w1) = PI(w1|[[fu]]) > PI(w2|[[fu]]) = PI(w2). As before, E’s utility function will
be decomposable into I’s utility function as defined above and a cost function, C. We
assume that C(fu) = 0 and C(f1) = C(f2) > 0, though small. Assuming that there
exists a 1-1 correspondence between worlds and actions, this means that for each
message f there is a unique action with the highest expected utility for I, denoted by
af . Notice that afu

= af1 = w1 6= w2 = af2 .
Given this, we can calculate for each message its expected utility for E: EUE(f) =∑

v∈Ω P (v) × UE(f, af , v). If we assume that E knows in which (type of) world he
is, EUE(f) reduces to UE(f, af , w) for the known (type of) world w. I can now
interpret E’s message again by interpretation rule Prag3. Notice that Prag3(fu) =
{w1}, Prag3(f2) = {w2}, while Prag3(f1) = ∅. For Prag3(f1) to be the empty
set, it has to be the case that there is another expression whose semantic meaning
includes w1 and sending it has a higher utility. This means that it has to be the
case that UE(fu, afu , w1) > UE(f1, af1 , w1). Although afu = af1 , this is the case
because C(fu) < C(f1). Notice that with the utility function UE as defined above,
the pragmatic interpretation rule Prag3 encodes Horn’s division of pragmatic labor:
the lighter message fu receives the stereotypical interpretation w1, while the marked
interpretation w2 has to be expressed by a marked message, f2.

5 Comparison with a signaling game approach

In this section we relate support problems with signaling games of complete coordina-
tion. David Lewis (1969) introduced signaling games to study (linguistic) conventions,
and extensions of these games have been studied afterwards in economics and biology.
In Game Theory textbooks (e.g. Fudenberg & Tirole, 1991; Gibbons, 1992), signaling
games are seen as dynamic (or extensive form) Bayesian games. The standard solu-
tion concept associated to Bayesian games is that of a perfect Bayesian equilibrium.
In this section we first show that a solution found for support problems by back-
wards induction is a Pareto-efficient equilibrium of the associated signaling game. On

12Almost, because if af contains more worlds, there might in principle be an alternative expression
f ′ with af ′ ⊂ af , and thus PI(w|af ′ ) > PI(w|af ). We have to assume that there are no such
alternatives f ′ ∈ F .
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the basis of this, we will suggest a motivation for the solution concept suggested by
Parikh (1992, 2001), who used (a version of) signaling games to account for some
conversational implicatures.

The relation between signaling games and support problems is not a one–to–
one relation. First, signaling games show more parameters than support problems,
especially expectations about the private information of the other player. Hence, there
is a whole family of signaling games that can be associated to one support problem.
Secondly, a signaling game is associated to many support problems as there are many
start nodes in the game, whereas support problems have a fixed start node.

We first define the version of signaling games which is of interest to us and intro-
duce the notion of a perfect Bayesian equilibrium.

signaling games and perfect Bayesian equilibria

A signaling game is a dynamic game of incomplete information involving two players:
a sender (s) and a receiver (r). Formally, a signaling game is a tuple 〈{s, r}, T, p,
(F,A), (Us, Ur)〉 with the following dynamics (taken from Gibbons, 1992):

1. Nature draws a type ti for the sender from a set of feasible types T = {t0, ..., tn}
according to a probability distribution p(ti), where p(ti) > 0 for every i and
p(t0) + ... + p(tn) = 1.

2. The sender observes ti and then chooses a message fj from a set of feasible
messages F = {f1, ..., fm}.

3. The receiver observes fj (but not ti) and then chooses an action ak from a set
of feasible actions A = {a1, ..., al}.

4. Payoffs are given by Us(fj , ak, ti} and Ur(fj , ak, ti), functions from forms, ac-
tions, and types to real numbers.

A player’s strategy is a complete plan of action: a plan that specifies a feasible
action in every contingency in which the player might be called upon to act. A pure
strategy for the sender is therefore a function S specifying which message, or form,
will be chosen for each type that nature might draw. A pure strategy for the receiver
is a function R specifying which action will be chosen for each message/form that
the sender might send. For each sender-receiver strategy combination 〈Si, Rj〉 we
can determine the expected payoffs of the participants given that the sender is of a
particular type t – EUe(Si, Rj , t) for e ∈ {s, r} –, in terms of this participant’s utility
functions Us and Ur. To see this, recall that Si(t) is a message/form, an element of
F , while Rj(Si(t)) is an action, an element of A.

EUe(Si, Rj , t) =
∑
t′∈T

µe(t′|Si(t))× Ue(S(t), Rj(Si(t)), t′). (5.19)

where µe(t′|Si(t′)) is defined (in simple signaling games) by means of conditionaliza-
tion in terms of strategy Si and (not yet defined) probability distribution Pe that
agent e assigns to the selected type as follows (where S−1

i (f) is the set of types in
which a sender playing strategy Si uses message f)

µe(t′|Si(t)) = Pe(t′|S−1
i (Si(t))). (5.20)
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A solution of a signaling game is a sender-receiver strategy pair 〈S, R〉 and is called
a perfect Bayesian equilibrium. Such an equilibrium is basically a Nash equilibrium,
meaning that both strategies respond optimally, in terms of expected utility, to one
another. The optimal strategy for the sender in t is very easy to determine, because
he knows of which type he is: Ps(t) = 1 = µs(t|Si(t)) iff s is of type t, 0 otherwise. As
a result, his expected utility in t is the same as his actual payoff in t : EUs(Si, Rj , t) =
Us(Si(t), Rj(Si(t)), t), and thus S(t) must solve maxf∈F Us(f,R(f), t). The optimal
strategy for the receiver involves her incomplete information about the sender’s type,
represented by probability distribution Pr = p. Learning that f has been uttered
means that the receiver learns that the actual sender’s type t is such that S(t) = f .
Hence, her posterior expectations about the speaker’s type result form updating p with
S−1(f). Now, R is an optimal strategy for the receiver if her response R(f) to message
f chosen by the sender has maximal expected utility given the posterior probability
µ, for each f . Thus, the action R(f) must solve maxa∈A

∑
t′∈T µr(t′|f)×Ur(f, a, t′).

To summarize:

Definition 5.1 A strategy pair (S, R) is a perfect Bayesian equilibrium for a signaling
game 〈{s, r}, T, p, (F,A), (Us, Ur)〉 iff:

1. ∀t ∈ T : S(t) ∈ argmaxf∈F Us(f,R(f), t),

2. ∀f ∈ F : R(f) ∈ argmaxa∈A
∑

t µ(t|f)× Ur(f, a, t),

where µ(t|f) = p(t)/p(S−1(f)), if S(t) = f , 0 otherwise.13

Representing support problems as signaling games

We now show how to represent support problems as signaling games. It is already
obvious that support problems and signaling games have much in common: two par-
ticipants (E and I, or s and r), with their own action sets (F and A) and their own
utility functions (UE and UI , or Us and Ur). What differs is that support problems
have probability distributions PE and PI , and the semantic interpretation function
[[ · ]], while in signaling games the set of types, T , and the probability distribution p
play a crucial role. Recall, first, that each element t of the set of types T represents in
a signaling game the sender’s, or expert’s, private information when the game starts.
But this is exactly what is represented by the probability distribution PE in a support
problem. Thus, we should think of a type as the expert’s private information. Be-
cause the only knowledge not shared by inquirer and expert in a support problem is
the latter’s type, we can define the distribution PI in terms of what the expert knows:
PE(X) = PI(X|t), for any X ⊆ Ω. The semantic interpretation function [[ · ]] can be
straightforwardly modeled in signaling games as a constraint on admissible sender
strategies. This leaves us with the parameter p, which represents in signaling games
the receiver’s/inquirer’s expectations about the sender’s/expert’s type. This param-
eter is not represented in support problems.14 Hence, we cannot give a one–to–one
mapping from support problems to signaling games. From this it follows that there
can also not be a one–to–one mapping between the solutions of support problems and
signaling games: to connect the two formalisms we have to prove that the solution

13In this paper we don’t care what µ(t|f) is in case f is not uttered by s in any type.
14Or better, is represented only in case the expert is known to have complete information of the

world he is in.

17



found by backwards induction in support problems is independent of p. We will do
this by showing that the solution found by backwards induction in support problems
give rise to the same behavior as the Pareto optimal perfect Bayesian equilibrium in
a singaling game.

For the purpose of comparison we introduce a slightly stricter definition of support
problem including some of the previous assumptions needed for calculating optimal
answers. We make the tie-braking rule explicit and we restrict our attention to support
problems where both probability measures PE and PI are derived from a common
prior, i.e. we assume that PE(X) = PI(X|t) for t = {v ∈ Ω | PE(v) > 0}. Hence, we
can identify the set of all possible speaker’s types compatible with PI with the set
{t ⊆ Ω | ∀v ∈ t : PI(v) > 0}.

Definition 5.2 A support problem is a nine–tuple 〈Ω, PE , PI , F, (A, <), UE , UI , [[ · ]]〉
such that (Ω, PE) and (Ω, PI) are countable probability spaces, [[ · ]] is the semantic
interpretation function, and 〈(Ω, PI),A, UI〉 and 〈(Ω, PE), F, UE〉 are decision prob-
lems. Ux : F × A × Ω −→ R are the payoff functions (with UI independent of F ).
We assume:

1. for x = I, E and all f ∈ F and a ∈ A :
∑

v∈Ω Px(v)× Ux(f, a, v) < ∞;

2. for all X ⊆ Ω: PE(X) = PI(X|t) for t = {v ∈ Ω | PE(v) > 0};

3. (Tie braking rule) < is a linear order on A. For f ∈ F we write af := max{a ∈
A | ∀b ∈ A : EUI(a|[[f ]]) ≥ EUI(b|[[f ]])};

4. ∃f ∈ F : EUE(f) = (maxa∈A
∑

v∈Ω PE(v)× UI(a, v))− C(f).

Clearly, each support problem in the sense of Definition 5.2 is well-behaved in the
sense of Definition 3.1. We denote the set of all support problems as defined now by
Σ. As before, we set for a support problem σ: Opσ := {f ∈ F | ∀f ′ ∈ F : EUE(af ) ≥
EUE(af ′)}. We use the following notation for support problems σ, σ′:

• σ′ ∼I σ if σ′ and σ differ only with respect to PE .

Given a support problem σ = 〈Ω, PE , PI , F, (A, <), UE , UI , [[ · ]]〉 ∈ Σ, we construct
a signaling game 〈{s, r}, T, p, (F,A), (Us, Ur)〉 with the following non-trivial identities:

1. T := {σ′ ∈ Σ | σ′ ∼I σ};

2. Us(f, a, t) =
∑

v∈Ω PE(v)× UE(f, a, v);

3. Ur(f, a, t) =
∑

v∈Ω PI(v|t)× UI(a, v);

4. p may be arbitrary as long as p(σt) > 0, where σt is now thought of as a type.

In order to represent the Gricean maxim of Quantity, we have to assume that the
following condition holds for the speaker’s strategies:

For any t ∈ T : if S(t) = f, then t ⊆ [[f ]]. (5.21)

This condition on strategies for signaling games is equivalent to the previous constraint
on support problems stating that the expert can only choose admissible assertions.

For the given signaling game, backwards induction yields all strategy pairs (S, R)
with S(t) ∈ Opσt

and R(f) = af . We have to show that (S, R) is a Pareto optimal
perfect Bayesian equilibrium.
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Proposition 5.3 Let σ be a given support problem and G an associated signaling
game. Then, all strategy pairs (S, R) with

S(σt) ∈ Opσ and R(f) = af (5.22)

are perfect Bayesian equilibria of G. They Pareto dominate all other equilibria.

Proof: We first prove that ∀t : S(t) ∈ argmaxf∈F Us(f,R(f), t):

Us(f,R(f), t) =
∑
v∈Ω

PE(v)× UE(f,R(f), v)

≤ max
f ′∈F

∑
v∈Ω

PE(v)× UE(f ′, af ′ , v)

=
∑
v∈Ω

PE(v)× UE(S(t), R(S(t)), v)

= Us(S(t), R(S(t)), t).

Next we have to show that

∀t0 ∈ T : R(S(t0)) ∈ argmaxa∈A
∑

t

µ(t|S(t0))× Ur(S(t0), a, t0).

Let t0 be given; then:∑
t∈T

µ(t|S(t0))× Ur(S(t0), a, t) =
∑

t∈{t|S(t)=S(t0)}

µ(t|S(t0))× EUI(a|t)

≤ max
a∈A

∑
t∈{t|S(t)=S(t0)}

µ(t|S(t0))× EUI(a|t)

=
∑

t∈{t|S(t)=S(t0)}

µ(t|S(t0))× EUI(aS(t)|t)

=
∑

t∈{t|S(t)=S(t0)}

µ(t|S(t0))× EUI(R(S(t))|t).

As R(S(t)) = R(S(t0)) for t ∈ {t ∈ T |S(t) = S(t0)}, it follows that the last line is
identical to∑

t∈T

µ(t|S(t0))× EUI(R(S(t0))|t) =
∑
t∈T

µ(t|S(t0))× Ur(S(t0), R(S(t0)), t).

This shows that (S, R) is perfect Bayesian. That it Pareto dominates all other strategy
pairs (S′, R′) follows from

Us(S′(t), R′(S′(t)), t) =
∑
v∈Ω

PE(v)× UE(S′(t), R′(S′(t)), v)

≤ max
f∈F

∑
v∈Ω

PE(v)× UE(f, af , v)

=
∑
v∈Ω

PE(v)× UE(S(t), R(S(t)), v)

= Us(S(t), R(S(t)), t).

and EUI(a|t) =
∑

v∈Ω PE(v)× UI(a, v).
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Comparing with Parikh

In the previous section we have given a game-theoretic account of many conversational
implicatures, including Horn’s division of pragmatic labor. It is exactly implicatures of
this latter type that Parikh’s (1992, 2001) game theoretic analysis of communication
concentrates most (if not all) his attention on.15 In essence, Parikh uses standard
signaling games as introduced above, together with the assumption that each message
f has a fixed semantic meaning, [[f ]]. Now consider the same setup as we used in
section 4.3 again. Thus, suppose that the speaker has complete information, and we
have 2 (types of) worlds, T = Ω = {w1, w2}, and 3 messages, F = {fu, f1, f2}. Just as
before, assume that fu has an underspecified meaning, [[fu]] = {w1, w2}, while f1 and
f2 have a specific meaning: [[f1]] = {w1}, and [[f2]] = {w2}. Let us also assume that
Pr(w1) = Pr(w1|[[fu]]) > Pr(w2|[[fu]]) = Pr(w2). Just as in section 4.3 we assume that
C(fu) = 0 and C(f1) = C(f2) > 0 though small, which is relevant for the sender’s
payoff. As it turns out, the combination of sender and receiver strategies that give
rise to the bijective mapping {〈w1, fu〉, 〈w2, f2〉} is a perfect Bayesian equilibrium
of this game. And this equililbrium encodes Horn’s division of pragmatic labor:
the cheap (and lighter) message fu expresses the stereotypical meaning w1, while
the non-stereotypical state w2 is expressed by a heavier and more costly message
f2. Unfortunately, also the mapping {〈w1, f1〉, 〈w2, fu〉} – where the lighter message
denotes the non-stereotypical situation – is a perfect Bayesian equilibrium of the game,
which means that the standard solution concept of signaling games cannot single out
the desired outcome. The reason why the latter mapping is also a solution is that in
case s would send f1 in w1 and fu in w2, the best response of the hearer is to interpret
accordingly, while if the hearer interprets fu as w2, the speaker’s optimal strategy is
to send f1 in w1 and fu in w2.

Parikh (1992, 2001) argues that to account for this problem we should adopt an-
other, and more fine-grained, solution concept. He observes that of the two equilibria
mentioned above, the first one Pareto-dominates the second, and that for this reason
the former should be preferred. Unfortunately, the Pareto-dominant Nash Equilib-
rium is not a standard solution concept in game theory, and so it is not completely
clear why it should be selected.

Van Rooij (2004b) suggests that because Horn’s division of pragmatic labor in-
volves not only language use but also language organization, one should look at sig-
naling games from an evolutionary point of view. Some natural variants of (standard)
evolutionary game theory indeed predict that only the Pareto-optimal solution of a
cooperative game is evolutionarily stable. Natural as this solution might be (according
to at least one of the authors), it cannot explain the implicatures where it is obviously
language use, and online computation that is at issue. Based on proposition 5.3, we
propose that (at least) for these cases we can motivate Parikh’s suggested solution
concept by assuming that the speaker should provide the optimal assertion.

What this means is that if we assume that the sender is fully informed about the
real world (as assumed in sections 4.2 and 4.3), the inverse function S−1 of sender
strategy S which is part of the Pareto dominant Nash equilibrium 〈S, R〉 gives rise
to the same pragmatic interpretation as the interpretation rule Prag3 as extensively
discussed in the previous section. Notice that interpretation rule Prag3 was based on

15In some of the implicatures treated by Parikh (2001) – e.g., the example where the receiver
should conclude from ‘It is 4 p.m.’ that she should go to the talk –, he assumes it is crucial to make
use of what he calls ‘the value of information’. We would question this assumption, however, and
argue that also Parikh himself treats these basically as Q2-implicatures.
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the assumption that the sender made the optimal assertion, assuming that the receiver
just interprets the message by its semantic meaning, without taking the sender’s
strategy into account. But this means that we can explain, or motivate, Parikh’s
solution concept by assuming that speaker’s and receiver’s choose their strategies this
way.

In Parikh’s discussion of conversational implicatures he concentrated mainly on,
what we have called, Horn’s division of pragmatic labor. But given proposition 5.3
we can now see that in terms of his framework he could also account for many other
conversational implicatures, including Relevance-implicatures and Q1-implicatures.
In fact, it can be shown that we don’t even have to make use of Pareto-optimal Nash
equilibria to account for Q1-implicatures; the standard solution concept of signaling
games will do.16

6 Conclusion

In this paper we have shown that to determine what the speaker in a cooperative
dialog meant with his assertion, on top of what he explicitly said, it is crucial that
we assume that the assertion he made was optimal. We used backwards induction for
calculating optimal assertions, and assumed that dialogues are embedded in decision
problems. The theory can account for relevance implicatures and mention-some read-
ings of answers, and we have shown how more standard implicatures could be derived
by making use of the same uniform theory as well.

In this paper we have made some crucial simplifying assumptions. Most obvi-
ously, we assumed that the speaker is (i) fully informed about the hearer’s decision
problem, and (ii) fully cooperative, i.e., shares the hearer’s utility function. The first
assumption is obviously highly artificial, but we don’t think that by giving it up we
should radically change our framework. The second assumption might be uncontro-
versial among proponents of Gricean pragmatics, but it is one that obviously cannot
be maintained in general. Fortunately, we have seen that we can think of our theory
in terms of signaling games. signaling games are widely discussed in economics and
biology, and our assumption of full cooperation between speaker and hearer is in this
framework the exception, rather than the rule. Thus, we can use signaling games
to study not fully cooperative communicative situations as well, but in that case
we can’t assume anymore that the hearer can determine what is implicated by the
speaker’s utterance by means of our rule of optimal assertion. Thus, we propose that
instead of following the Gricean maxims of conversations, the best way to assure that
speakers conform to Grice’s own cooperativety principle is to assume that speakers
act optimally on the assumption that hearer’s update their beliefs as described in this
paper.
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